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Chapter 2
An Embodied Theory of Transfer 
of Mathematical Learning

Mitchell J. Nathan and Martha W. Alibali

In the brief photo transcript shown in Table 2.1, below, taken from a high school 
engineering lesson, we encounter a critical educational challenge: In the rich sen-
sory stream of spoken words and metaphors, written symbols, diagrams and 
sketches, gestures, simulations, and actions on objects, all of which occur in multi-
ple venues such as the classroom and machine shop, how do learners perceive and 
construct for themselves a connected meaning of a concept such as theta, the angle 
of ascent of a projectile? The answer, we argue, depends on a theory of transfer that 
is embodied: The concept is depicted and comprehended in terms of actions, ges-
tures, spatial metaphors, and other body-based resources; embedded in various spe-
cific physical and social settings; extended across multiple modalities, material 
resources and participants; and enacted through the actual or simulated interplay of 
perception and action among students and their teachers.

Project-based learning (PBL) environments, such as those common to problem-
based and other science, technology, engineering, mathematics (STEM) education 
settings, offer a rich stream of activities and experiences that are intended to ground 
students’ understanding of important mathematical ideas and to motivate the rele-
vance of these ideas across a range of content and contexts. In so doing, success in 
PBL settings requires learners to construct a concept—such as theta—and follow 
it across a multitude of modal forms and contexts while recognizing it as invariant. 
Understanding what is required of students to establish, perceive, maintain, and 
express such invariant relations across such environmental and perceptual variabil-
ity motivates an embodied theory of transfer of mathematical knowledge.
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In this chapter, we first argue that the processes involved in establishing and 
maintaining cohesion of invariant relations during PBL are not readily described by 
classic accounts of transfer. We hypothesize instead that the processes involved in 
transfer of mathematical ideas throughout complex learning settings are necessarily 
embodied, and we consider the assumptions that form the basis of an embodied 
account of transfer as mapping of modes of perceiving and acting to achieve cohe-
sion across contexts. We then use this embodied framework to illustrate successful 
and unsuccessful transfer in PBL settings. From this, we propose that transfer pro-
cesses are necessarily embodied and socially mediated, in that they are grounded in 
the actions on and perceptions of the material world in which they are embedded 
and they are extended across multiple actors, typically learners and their teachers. 
These elements come together in an embodied theory of transfer. In the final sec-
tion, we discuss the implications of embodied transfer for educational practice and 
identify important future areas for research.

2.1  �Limitations of Classic Approaches of Transfer

Transfer can be defined as the application and extension of learned mathematical 
ideas beyond the context in which they were originally learned. Transfer has a long 
history in educational psychology (Bransford & Schwartz, 1999; Woodworth & 
Thorndike, 1901). Indeed, the enterprise of a liberal arts education is predicated on 
the notion of transfer and on the idea that learning general topics and principles will 
provide guidance for addressing the social and scientific issues facing the next gen-
eration of leaders, scholars, artisans, and others.

At the heart of classical models of transfer lies the notion of common elements, 
wherein the transfer of skilled performance is modeled as reapplication of previ-
ously learned actions that follow from an expert’s assessment of the degree of over-
lap of environmental conditions that may be readily observed (near transfer) or that 

Table 2.1  Photo Transcript 1: Day 1

Teacher (to class): What happens when the, when we project 
something through the air [1], is we end up with something 
like [2] this depending upon the angle here, which is theta. 
And, this is our range. And basically, what we have, is, we’re 
working with vectors here. So, we end up with, some vectors 
that look like this and we call this, vector Vx and V … Vy. And 
we can say that, Vy we’re gonna start with Vy here. This 
distance, this, right here. So, we’re gonna start with, Vy, 
equals Vo, sine, of theta.
Student: Mr. [Name], what’s Vo?

 [1]

 [2]

Note. Bold text and indices align with images
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are only apparent at a deeper, structural level (far transfer; Singley & Anderson, 
1989; Taatgen, 2013). From this theoretical perspective, abstracted, rule-like 
condition-action processes are antecedent to successful transfer. In this sense, per-
ceptual richness is antithetical to transfer because it works against the formation of 
abstractions and their reapplication (e.g., Kaminski, Sloutsky, & Heckler, 2013).

Classical accounts of transfer fall short at explaining PBL and the learning that 
occurs in complex settings in several respects. First, the common elements that are 
the signature of classical accounts of transfer are often identified by experts, rather 
than generated from the learner’s perspective (Lobato, 2003, 2006). Thus, it is not 
clear whether learners are aware of them and actually transferring on the basis of 
those common elements. Second, classical accounts are founded on analyses of 
simple stimuli, for which identifying common elements is relatively straightfor-
ward. This is not the case in many PBL settings, in which a single curriculum unit 
can extend over long periods of time in multiple spaces; can include many partici-
pants; and can engage a variety of objects, technological resources, and notational 
systems (Kozma, 2003). Third, classical accounts foreground learners’ transfer pro-
cesses while marginalizing (or neglecting entirely) the pedagogical processes 
enacted by teachers that establish the contexts in which transfer takes place and that 
support processes of transfer.

A primary issue for students in PBL is having a cohesive experience so that the 
various elements of the learning environment are experienced as connected and 
meaningful (Nathan, Wolfgram, Srisurichan, Walkington, & Alibali, 2017). 
Cohesion is the quality of unity or relatedness of ideas and experiences. It is com-
monly operationalized in terms of the degree to which ideas in a complex text are 
interconnected, even as one moves across clauses and sentences (McNamara, 
Graesser, Cai, & Kulikowich, 2011). As used here, producing cohesion refers to 
forming and maintaining connections among the many disparate elements of the 
learning environment that might otherwise serve as obstacles to transfer. For engage-
ment and learning to take place in PBL settings, cohesion of invariant relations is 
paramount because ideas are presented in a variety of forms and settings. However, 
this process has been neglected in classical accounts of transfer.

2.2  �Transfer as Embodied: Underlying Assumptions

Numerous challenges and alternatives to the classical theory of transfer have been 
raised, addressing the reductionist basis of transfer and the insensitivity of the clas-
sical theory to situated context (e.g., Detterman & Sternberg, 1993) and culture 
(e.g.,  Scribner & Cole, 1981). For example, the situative perspective (Greeno, 
Smith, & Moore, 1993) privileges participation across contexts over the reapplica-
tion of knowledge in assessing transfer. The actor-oriented transfer perspective 
(Lobato, 2003, 2008) considers generalized behaviors based on the agent’s perspec-
tive of what is similar across familiar and novel settings. An account based on learn-
ers’ “episodic feelings” integrates cognition, emotion, and bodily experiences in 
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explaining patterns of transfer (Nemirovsky, 2011). These alternative frameworks 
share a view of the learner as an embedded, engaged, embodied actor and allow for 
the world to “seep in” to the cognitive realm that was previously theorized as iso-
lated from the material realm.

With advancements in theories of embodied cognition, there is now a sufficient 
conceptual and empirical foundation for articulating an embodied theory of transfer 
of mathematical ideas. Indeed, we argue that an embodied perspective is necessary 
to account for learners’ transfer in PBL settings and other complex learning envi-
ronments, and it can also help explain instances of unsuccessful transfer. A related 
idea was presented by Goldstone, Landy, and Son (2008), who theorized that learn-
ing grounded in perception and interaction supports generation of transferable 
knowledge. They demonstrate successful transfer on tasks such as solving symbolic 
algebra equations and understanding the cross-domain application of deep princi-
ples of complex systems performance. Based on their analyses of these examples, 
they propose that perceptual knowledge transfers

to new scenarios and transports across domains, most often proceeding not through acquir-
ing and applying symbolic formalisms but rather through modifying automatically per-
ceived similarities between scenarios by training one’s perceptual interpretations. (p. 329)

This account of the role of perception and interaction in transfer is promising for a 
broad account of transfer to complex, collaborative, multimodal learning contexts.

There are several assumptions at the core of our embodied theory of transfer. The 
first assumption is that the cognitive system is a predictive architecture. Rather than 
passively waiting for input to act, humans are continually anticipating the next 
events in the stream of sensory input and are already poised to respond. In this 
sense, transfer is the default mode—no two environmental stimuli are identical, and, 
regardless, body states are never fixed in time. Whether transfer is deemed success-
ful is often a function of experts’ expectations for what should be transferred, rather 
than whether any form of transfer took place for the learner.

Second, there is reciprocity between cognitive states and actions, such that 
actions (arm movements performed by a student, for example) can drive the system 
into related cognitive states through the process of action-cognition transduction 
(Nathan, 2017; Nathan & Walkington, 2017). Transduction provides an account for 
how systems can operate in “forward” and “reverse” directions, a common property 
of many physical and biological systems. For example, with cognition driving 
action in the “forward” direction, a student may spontaneously extend her arms in a 
mathematically relevant manner to assist her in reasoning about a property of tri-
angles. Students can also be prompted to extend their arms in either a mathemati-
cally relevant or irrelevant manner by having them touch locations on an interactive 
whiteboard. Nathan and colleagues (Nathan et al., 2014) investigated the hypothesis 
that mathematically relevant movements would drive the cognition-action system in 
the “reverse” direction and activate the appropriate conceptual reasoning for the 
task, but mathematically irrelevant movements would not assist the student. In sup-
port of this hypothesis, they found the mathematically relevant movements improved 
mathematical proof production, even though participants reported making no 
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connection between the mathematics and the directed movements, and mathemati-
cally irrelevant movements did not.

Transduction recognizes that actions can drive the system to certain cognitive 
states using many of the same pathways that enable cognitive processes to elicit 
actions. Transduction plays an integral role in explaining successful and unsuccess-
ful transfer. It explains, for example, how the execution of previous modes of per-
ceiving and acting, activated by familiar contextual cues or expectations of the 
predictive architecture, can activate inappropriate concepts, leading to unsuccessful 
transfer to new task demands. Our focus on transduction reflects the empirically 
supported view that the coupling between cognition and action involves rich, multi-
directional pathways (e.g., Abrahamson & Trninic, 2015; Nathan et  al., 2014; 
Thomas, 2013)—richer than those that are typically described in classical informa-
tion processing theory, which generally acknowledges only a unidirectional path-
way via which cognition drives actions.

Third, people do not come to know the world as a verbatim sensorial record of an 
objective external world; instead, people are driven to make sense of their experi-
ences, and meaning is constructed through the continuous interplay of social, cogni-
tive, motoric, and perceptual processes of a highly dynamic, self-regulating 
organism, in what is often referred to as the perception-action loop (cf. Neisser’s 
(1976) “perceptual cycle” as being central to everyday cognition). People construct 
mathematical meanings by coordinating situated perceptual and motor behaviors 
with the behaviors of mathematical objects (Abrahamson & Sánchez-García, 2016). 
Thus, the world we can know depends in part on the ways in which we can interact 
with it, physically and perceptually (Varela, Thompson, & Rosch, 1991). Meaning 
making also depends on establishing and maintaining common ground among inter-
locutors (e.g., H. H. Clark & Schaefer, 1989; Nathan, Alibali, & Church, 2017). 
Embodied processes are crucial for efforts to manage common ground in pedagogi-
cal contexts, where teachers regularly strive to foster common ground by using 
indexical speech and linking gestures (e.g., Alibali et  al., 2014; Alibali, Nathan, 
Boncoddo, & Pier, 2019).

Fourth, mathematical ideas are embodied and tangible (Hall & Nemirovsky, 
2012), and they can be expressed in metaphorical speech (Lakoff & Núñez, 2000), 
gestures and simulated actions (Hostetter & Alibali, 2008, 2019), diagrams and 
inscriptions (de Freitas & Sinclair, 2014), and physical objects (Martin & Schwartz, 
2005). Importantly, mathematical ideas in different modalities may be linked via 
speech, gestures, and action (Goodwin, 2013), creating a rich multimodal experi-
ence that is a signature of PBL and that serves to ground the meanings of the 
referents.

Fifth, cognition is extended beyond the individual actor’s brain such that task-
relevant knowledge is grounded and distributed across actors, objects, and space 
(A. Clark & Chalmers, 1998). One example is cognitive offloading, wherein actors 
“use the world as its own model” (Brooks, 1991, p.  139) rather than depend on 
symbolic representations of the world and symbol-manipulation operations on those 
representations, which are the hallmark of traditional transfer (e.g., Lave, Murtaugh, 
& de la Rocha, 1984).

2  An Embodied Theory of Transfer
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Sixth, because transfer is embedded in the situations in which activity unfolds, 
teachers and students are each engaged in transfer, and they serve as actors in 
exchanges that are situated in particular learning contexts. In many cases, teachers 
and curriculum developers have thoughtfully designed specific contextual supports 
for transfer; in other cases, teachers generate such supports “on the spot.”

Finally, conceptual development naturally follows a process of progressive 
formalization (Romberg, 2001), which can be instantiated in the pedagogical 
practice of concreteness fading (Fyfe, McNeil, Son, & Goldstone, 2014). 
Concreteness fading is a developmentally informed approach to instruction that 
recognizes the importance of initial physical interactions (enactive processes) for 
early sense making about new concepts. This physical interaction creates the pre-
conditions that support the emergence of perceptually based representations, and 
the eventual construction of abstract symbols, as physical and perceptual qualities 
are explicitly faded. Many educational approaches neglect this progression and 
instead follow the formalisms first approach to instruction (Nathan, 2012), 
wherein mathematical ideas are initially introduced in their most formal, sym-
bolic, decontextualized form and only later grounded and applied. The conven-
tional rationale is that the perceptual sparseness of abstract symbols benefits 
learners by reducing perceptual distraction (e.g., Kaminski et al., 2013). However, 
novices often flounder with early presentation of decontextualized symbols 
(Nathan, 2012). Experimental comparisons reveal benefits of concreteness-fading 
instruction over formalisms-first instruction for a wide range of mathematical 
concepts spanning elementary arithmetic, middle school and secondary level 
algebra, and postsecondary systems-theory concepts (Fyfe et  al., 2014). 
Concreteness fading is especially well suited for fostering key STEM education 
principles in design- and product-oriented collaboration, as commonly imple-
mented in PBL settings.

2.3  �Transfer: Mapping of Invariant Relations 
to Achieve Cohesion

From an embodied perspective, the crux of transfer is establishing cohesion across 
contexts and physical instantiations, such that modes of perceiving and acting 
appropriate for engaging with a mathematical relation in one context (i.e., with a 
particular object or representation) also meaningfully apply in another context. In 
past work (Nathan et al., 2013; Nathan, Wolfgram, et al., 2017), we identified the 
significant challenges that students faced as they developed, to varying degrees, the 
skills for noticing and acting on similarities of different materials, labels, ecological 
contexts, iconic representations, and symbolic notations by virtue of their shared 
invariant mathematical relations. For example, in the excerpt of an engineering les-
son presented at the outset of this chapter, the notion of angle of ascent (theta) is 
depicted in a variety of modal forms, including speech, symbols, gestures, and dia-
grams (and, later, in a working physical device); however, a single invariant 
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mathematical relation underlies all of these forms. To establish cohesion, various 
modal forms must be regarded by students as similar in terms of their perceptions 
and actions.

Critically, these differing modal forms vary in the actions they afford. Following 
J. J. Gibson (1966, 1979/2014), we define an affordance as the complementary rela-
tion between an object (which we take to include symbolic and material objects that 
are physical or imagined) and an actor who engages with that object. In an engineer-
ing lesson, for example, a physical device may afford grasping and holding, whereas 
the symbolic expression that mathematically models the behavior of that device 
does not. Thus, the processes of perceiving and acting that apply to one modal form 
may not apply to another modal form. For cohesion to be produced, the perceptions 
and actions applied to one modal form as it is manifest in one context must evoke in 
the actor a connection to a related modal form, which may be encountered in the 
same or in a different context.

A striking example of cohesion production is provided by Alibali and Nathan 
(2007) in an early algebra lesson for sixth-grade students. The teacher sought to 
connect a drawing of a pan balance scale (the initial modal form) that had an 
arrangement of blocks placed on the two sides to a symbolic equation (the second 
modal form) that represented that configuration of the balance scale with literal 
symbols and arithmetic operators. In the first such arrangement, two spheres on the 
left pan exactly balanced the sphere and two cylindrical blocks on the right pan.

The teacher emphasized that simultaneously removing the same type of block 
from the two sides of the balance scale corresponded to subtracting the same value 
from both sides of the equation, thus establishing the mapping between the bal-
ance scale and the equation and extending the original action that applies to the pan 
balance (object removal) to algebraic manipulation (symbolic subtraction). This 
provides a clear example of how embodied processes support transfer by depicting 
the ways these lifting actions can be applied first in a primary context (pan balance) 
to a second context (symbolic equation). It also shows how a teacher simulates the 
lifting of two literal symbols simultaneously from each side of the equation as a way 
to maintain cohesion when shifting modal forms from objects on a balance scale to 
an equation.

For a learner to exhibit transfer of knowledge across different contexts, a map-
ping between the actions afforded by the modal forms in each context must be made 
to establish cohesion. Mapping may be spontaneous or require instructional sup-
port. Lobato and colleagues (e.g., Lobato, 2003; Lobato, Ellis, & Muñoz, 2003) 
highlight ways the educational environment can be structured to orient learners’ 
attention to such mappings, and they refer to such practices as focusing phenomena.

Evidence that a mapping has been formed may then be revealed in learners’ later 
behaviors. For example, we may observe students tilting a ballistic device (e.g., a 
catapult) to launch a projectile at a particular angle in a way that is fundamentally 
similar to solving the range equation for a particular value of theta. That is, the 
device acts as a “range function” that “computes” the landing distance of an object 
given (virtually) any input angle, which is achieved by tilting the launch pad. We 
consider evidence of such a mapping later in this chapter.

2  An Embodied Theory of Transfer
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In brief, we argue that transfer occurs when learners and teachers establish cohe-
sion of their experiences by mapping modes of perceiving and acting that they suc-
cessfully used in one context to a new context. Learners and teachers express that 
cohesion across contexts in a variety of ways, principally through speech, gestures, 
and actions, including simulated actions.

Note that mapping supports identification of invariant relations by juxtaposing 
contexts that afford corresponding modes of perceiving and acting. Importantly, this 
identification and mapping may be implicit or explicit for the learner. This view of 
transfer differs from classical theories that rely on extracting common knowledge 
structures or rules with generalized conditions for application.

Transfer, by this account, centers on two distinct but related processes: construct-
ing a mapping of an invariant relation across contextualized modal forms and 
expressing cohesion established by that mapping, as indicated by various behaviors, 
as described below. We consider each of these processes in turn.

2.3.1  �Mapping as a Mechanism for Cohesion

We posit that mapping is a mechanism for establishing cohesion. Mapping can be 
aided by the focusing “moves” made by teachers, parents, curriculum designers, 
and knowledgeable others who already apprehend connections, and it can be sup-
ported by contextual cues, such as spatial alignment, labeling, and deictic gestures. 
Mapping can also be managed by learners who regulate their own environments to 
provide helpful contextual supports, such as placing information side by side.

Mapping involves constructing a relation between two (or more) objects, inscrip-
tions, or ideas. We argue that there are multiple mechanisms by which mapping may 
occur. In some cases, learners may engage in explicit analogical mapping. For 
example, a child might reason about fraction division by explicitly mapping ele-
ments of a given fraction-division problem to elements in a whole-number division 
problem, saying, “6 ÷ ¼. Well, if I was doing 6 divided by 2, I would make groups 
of 2. So, 6 ÷ ¼, I’m going to make groups of ¼.” In other cases, learners may per-
form mapping in a more implicit way, via relational priming, a process by which 
exposure to some task or situation primes a relation that can then be recognized or 
used in a novel task or situation (Day & Goldstone, 2011; Leech, Mareschal, & 
Cooper, 2008; Sidney & Thompson, 2019). For example, after modeling whole-
number division problems with cubes— by forming groups the size of the divisor—
a learner might enact the same relation to model a fraction-division problem because 
that relation (forming groups) was primed in the initial task (Sidney & Alibali, 
2017). Another means of forming the mapping is through conceptual metaphor 
(Lakoff & Núñez, 2000), where one idea, such as arithmetic, is referred to in terms 
of another idea, such as object collection. As in this example, the second domain 
(the target domain) is more familiar and more concrete than the first, source domain. 
Conceptual metaphors are grounding, inference-preserving cross-domain map-
pings. Using conceptual metaphor, the inferential structure of one conceptual 
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domain (say, whole numbers) is used to reason about another (say, fractions). In still 
other cases, learners may map relations via conceptual blending (Fauconnier & 
Turner, 1998, 2008), a mechanism by which people link two ideas that share struc-
ture, and “project selectively from those inputs into a novel ‘blended’ mental space, 
which then dynamically develops emergent structure” (Fauconnier, 2000, p. 2495). 
All of these forms of mapping—analogical mapping, relational priming, conceptual 
metaphors, and conceptual blends—forge correspondences, and these correspon-
dences may afford engaging in corresponding modes of perceiving and acting.

Because transfer involves mapping modes of perceiving and acting from one 
context or representation to another to produce cohesion, we assert that pedagogical 
moves that support mapping are integral to transfer. Indeed, teachers engage in 
many practices, both planned and spontaneous (Alibali et  al., 2014; Nathan, 
Wolfgram, et al., 2017), that highlight invariant relations across contexts, represen-
tations, and material forms. In subsequent sections, we highlight several distinct 
mapping practices that teachers use, both in ordinary mathematics instruction and in 
PBL settings, including projecting invariant relations across time and space and 
coordinating representations using techniques such as consistent labeling, linking 
gestures, and gestural catchments (Nathan et al., 2013).

2.3.2  �Expression of the Mapping

If, indeed, this mapping of modal-specific ways of perceiving and acting is at the 
heart of transfer, it will be expressed—at least in some cases—in learners’ behav-
iors. Learners may, for example, appropriate actions or ways of thinking applied in 
one context for use in another, and they may make mappings (either implicit or 
explicit) between the contexts. Some aspects of learners’ behaviors in the novel 
context—their language, gestures, or actions—may reveal the mapping of modal-
specific forms of perceiving and acting from a prior context (Donovan et al., 2014).

Learners’ behaviors in different contexts often involve different sorts of actions, 
and their gestures in novel contexts may reveal activation of action patterns that they 
have produced in other contexts (Donovan et al., 2014). Learners may produce ges-
tures in novel contexts that are similar in form to actions they produced in previous 
contexts. This repetition of gesture form—termed a gestural “catchment” by 
McNeill (2000)—is thought to reveal cohesion in speakers’ thinking. Gestural 
catchments may reveal implicit or explicit mappings between contexts, representa-
tions, or material forms (Donovan, Brown, & Alibali, 2021).

Mapping often involves forming a conceptual blend, and such blends can be 
expressed in many ways (Fauconnier & Turner, 2008; Williams, 2008). When con-
ceptual blends are established in classroom settings, the physical context typically 
offers a material anchor for the blend. Thus, the blends observed in PBL settings are 
often grounded blends (Liddell, 1998) that include elements of the immediate, 
physical environment. For example, a student may mount a protractor on a catapult 
arm and rewrite the angular measures as distances to the target, thus using a material 
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anchor to blend angular measure with projectile motion using trigonometry and the 
laws of kinematics. The actions that the student previously applied to the original 
artifact (such as adjusting the angle of the protractor) can support new, inferential 
actions, such as retargeting based on lineal measure, which extend the student's 
repertoire of actions into the space of the new conceptual blend (Williams, 2008).

The earlier example of a teacher simulating the lifting of the same symbols off 
two sides of an equation, much as one lifts the same objects off two sides of a bal-
ance scale, is one such conceptual blend. Here, we can see how the mapping is 
formed. In this conceptual blend, the equation is treated as a pan balance and the 
adding and removing of objects to maintain balance maps to the manipulation of 
terms in the equation to maintain equivalence. Further, the teacher expressed this 
mapping explicitly in speech, noting that she wanted to “take a sphere off of each 
side” but saying that “instead of taking it off the pans, I’m going to take it off this 
equation.” Thus, she identified the invariant relation of maintaining equivalence, 
performed the mapping of the pan balance to the equation with an explicit verbal 
link, and expressed cohesion across the modal forms through the reapplication of 
gestures that depicted the same actions. This mapping is illustrated in Fig. 2.1.

Other features of the teacher’s speech also manifest her effort to align the dia-
gram and the equation. For example, she used the same pronoun to refer to the 
sphere pictured in the diagram and the symbol s in the equation: “Instead of taking 
it off the pans, I’m going to take it off this equation” (emphases added), thus high-
lighting that the two inscriptions refer to the same quantity. She also used the same 
verb—taking off—to refer to removing a sphere from each side of the pan balance 
and subtracting s from each side of the equation. Thus, she highlighted the corre-
spondence of these actions using a common label.

The teacher also expressed the correspondence between the pan balance and the 
equation in her gestures. She used a grasping gesture with both hands to gesturally 
depict taking the blocks off the two sides of the scale—a simulated action (Hostetter 
& Alibali, 2008, 2019) over the drawing of the scale. She then produced this same 
grasping handshape over the corresponding symbols in the equation to refer to sub-
tracting values from the two sides of the equation. With this gestural catchment, the 
teacher sought to communicate the invariant relation of equivalence as “remove the 

Fig. 2.1  The math teacher identified an invariant relation of maintaining equivalence and per-
formed the mapping of the pan balance to the equation with an explicit verbal link and repeated 
gestures that depicted actions

M. J. Nathan and M. W. Alibali



37

same quantity from both sides” as it applied both to the physical pan balance 
depicted in the drawing and to the symbolic equation.

Note that this teacher simulated the action of “grasping objects” over both the 
diagrammatic and the symbolic representations, even though neither of these two 
inscriptions (diagram and equation) would afford this physical action. Both are two-
dimensional representations, so their elements cannot be grasped or picked up. 
Importantly, however, the teacher’s hands were configured as if actually grasping 
objects, and, in this way, her gesture evoked the physical objects that were repre-
sented symbolically in the diagram and the equation. Thus, in this simulated action, 
the teacher expressed a set of analogical relationships among the physical situa-
tion—which would afford such action—and the two inscriptions.

Thus, this conceptual blend was expressed in a range of ways: via an explicit 
verbal link, via common labels for related elements, and via a gestural catchment of 
the same simulated action performed in both spaces. The blend was grounded both 
in the two inscriptions, which were physically present, and in the (absent) physical 
objects that were evoked by the configuration and motion of the teacher’s hands in 
real space (cf. Liddell, 1998). Using speech and gestures in these ways, the teacher 
organized corresponding elements of different representations with reference to one 
another, linking them together multimodally, in an effort to help students apprehend 
their connections.

This example also illustrates the centrality of the teacher in our theory of transfer. 
Teachers use a range of verbal and gestural techniques to support students in identi-
fying the invariant relations and making the relevant mappings across contexts, rep-
resentations, and material forms to establish cohesion (Alibali et al., 2014; Nathan, 
Wolfgram, et  al., 2017). This is why we claim that the pedagogically designed 
actions of teachers—as well as parents, collaborators, and curriculum developers—
are an integral part of transfer when viewed from an embodied perspective. We 
further suggest that expressing cohesion in the various ways described here is pro-
ductive for learners’ thinking, in the sense that it affirms, strengthens, and reifies the 
mappings across modal forms that have been established. It also serves as an effec-
tive means of communicating these mappings to others during collaboration or 
instruction.

2.4  �Illustrating Embodied Transfer in a PBL Context

In this section, we provide examples from a PBL engineering classroom that dem-
onstrate the power of an embodied theory of transfer to account for both successful 
and unsuccessful transfer. The examples also illustrate how a teacher’s pedagogical 
moves foster cohesion for students in the PBL classroom and are thus a necessary 
part of an embodied account of transfer. The examples show how successful transfer 
arises by establishing this cohesion, whereas unsuccessful transfer occurs when 
learners’ actions remain overly restricted to earlier modes of perceiving and acting.

2  An Embodied Theory of Transfer
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2.4.1  �The Three Central Elements when Analyzing Transfer 
from an Embodied Perspective

The accompanying examples illustrate the complex process of transfer that students 
and teachers face in the PBL classroom. Photo Transcript 1 (Table  2.2, which 
includes the excerpt from the chapter introduction) is taken from an engineering 
class in a U.S. Midwestern urban high school in late spring, near the end of the 
school year. This excerpt sets the PBL design challenge to build a ballistic device 
that can make a projectile hit a basket at some location, undisclosed until the last 
moment, with successful engineering based on the underlying math and physics of 
projectile motion. Even the open lecture, which focuses on trigonometry and kine-
matics, is rich with embodied methods of grounding the target invariant relation and 
other associated mathematical ideas and helping to foster cohesion as these ideas 
are manifest in multiple modalities, including symbols, drawings, words, wood, and 
the teacher’s gestures.

We distinguish between the authentic classroom learning experience in which 
the students and teacher are embedded and the analytic process that is undertaken 
by researchers who study these classroom events. In terms of analysis, there are 
three central elements of transfer. First, it is critical for the analyst to identify the 
invariant relation that is central to the curriculum design and threaded throughout 
the modal forms. For this multiday unit, for example, the invariant is theta, high-
lighted by the teacher on Day 1 and labelled as the “angle of projection.” Second, 
the analyst must describe the mapping of the invariant relation across the range of 
modal forms used in the series of lessons. Third, the analyst must be able to describe 
how this mapping is expressed by the teacher and the students in the learning 
environment.

Separately from the analytic concerns of researchers, for learners to experience a 
sense of cohesion across the various modal forms and contexts that are the hallmark 
of the project-based curriculum, they must construct for themselves the mapping of 
modes of perceiving and acting that, optimistically, will apply across contexts. The 
mappings that are part of the expert model of transfer are important for the curricu-
lum design, and may be shared in teacher supplementary materials, but they often 
remain implicit to the students (Prevost et al., 2014). Learners act on the new modal 
forms (e.g., their design sketches, mathematical models, and machined devices) in 
accordance with their constructed mappings. Learners’ actions may operate in 
accordance with the expert model, indicating effective near and far transfer, as will 
be seen in Photo Transcript 2 (Table 2.3). Alternatively, learners’ actions may be 
applied to subsequent modal forms in ways that do not align with the conceptual 
structure of the invariant relation, leading to “false transfer,” as illustrated in Photo 
Transcript 3 (Table 2.4).

In the examples that follow, theta is most commonly invoked by the teacher and 
by several of the students in a gesture of a flat hand posed at a fixed angle or of a flat 
hand pivoted at the wrist to refer to the range of angular values that theta can take. 
The repeated expression of this idea in gesture makes up a gestural catchment, 
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which reinforces cohesion across different manifestations of the invariant relation. 
Further, theta is also evident in the design sketches created by the students and in 
the material devices that students build as they strive to create a ballistic device that 
can be adjusted “on demand” to enable a projectile to precisely hit a desired target.

An invariant relation across modal contexts  This first photo transcript demon-
strates (a) identification of the invariant relation and (b) the ways a teacher uses 
pedagogical actions to highlight for students the mapping of the invariant relation 
across multiple modal forms.

Table 2.2  Photo Transcript 1: Day 1

Line Transcript Photo

1 T: I had given you an assignment to start working 
on a ballistic device that will throw a ping pong 
ball.

2 T: And we had some constraints with that, um on 
a handout that I gave you. Particular constraints.

3 T: What I wanna do today, is talk about, the 
angle of the projection [1], that we shoot this, 
fire our ping pong ball and the distance [2] it’ll 
go.

[1]

[2]
4 T: And kinda mathematically determine what’s 

the best angle [3] to get the maximum range, 
given a set velocity, of that we’re firing this thing, 
okay?

[3]
5 T: So we know that we can change the distance.
6 T: What are some of the ways that we can change 

the distance, if we’re shootin’ a ping pong ball 
out of a device? [Name]?

7 S: Angle of like, the ball.
8 T: Okay. Angle of projection. [4]

[4]

(continued)
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Table 2.2  (continued)

Line Transcript Photo

9 T: That’s gonna have an effect on it, right? What 
else?

10 S: Velocity.
11 T: Velocity. Which is, the speed in a certain, in a 

set direction [5] that we wanna go, ‘kay.

[5]
12 T: Those basically are the two elements that are 

gonna affect the range [6].

[6]
[Omitted portion]

13 T: Alright so up here on the board, I want you to 
follow along, this is definitely a little bit 
complicated but I think we can get a handle on it.

14 T: We’re gonna—we’re gonna look at two 
aspects of this.

15 T: One, we’re gonna look at the angle that affects 
our range.

16 T: And once we pick, a-a-and then after we select 
an angle, we’re also gonna calculate the range 
that we can get by, with those different angles.

17 T: So let’s look at how this works.
18 T: First of all, put this over here, so draw it along 

with me.
19 T: What happens when the, when we project 

something through the air [7], is we end up 
with something like [8] this depending upon the 
angle here, which is theta.

[7]

[8]
20 T: And, this is our range.

(continued)
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Table 2.2  (continued)

Line Transcript Photo

21 T: And basically, what we have, is, we’re 
working with vectors here [9].

[9]
22 T: So we end up with, some vectors that look 

like this and we call this, vector Vx and V, 
Vy[10].

[10]
23 T: And we can say, that, Vy we’re gonna start 

with Vy here.
24 T: This distance this, right here.
25 T: So we’re gonna start with, Vy, equals Vo, sine, 

of theta.
26 S: Mr. [Name], what’s Vo?
27 T: Actually Vo is going to be the velocity. ‘Kay. 

Good question.
[Omitted portion]

28 T: ‘Kay, now to relate this to our project, I’m 
actually gonna give you a distance and I’m gonna 
say “okay we’re gonna send, we’re gonna set the 
basket fifteen feet away,”

29 T: but whatever distance that is, I’m gonna 
decide that at the time.

30 T: We’re gonna set the, the basket so many feet 
away and you have to try to hit it.

31 T: So by doing some calculations on, what 
you’re, um, ballistic device fires, you can kinda 
set your angle hopefully to get, to get that 
distance.
[Omitted portion]

32 T: Well what I want you to do is after you, 
assemble your ballistic device, I actually want 
you to be able to gauge these angles on the 
device [11]

[11]
33 T: and maybe we can stick an angle gauge in 

there somehow to check these angles

(continued)
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We now analyze how the conditions for transfer are established by the teacher in 
this setting through his pedagogical actions. Our analysis of transfer in PBL settings 
rests on three analytic actions: (a) identify the invariant relation; (b) describe one or 
more mappings; and (c) document how participants in the learning environment 
express those mappings. Photo Transcript 1 illustrates the first two of these, with the 
mapping as a conceptual blend. The third component—how both the students and 
the teacher express those mappings using language, gesture, and action—is illus-
trated in Photo Transcripts 2 and 3.

The invariant relation is called out by the teacher as part of his presentation in 
Photo Transcript 1, Line 3, “talk about, the angle of the projection that we shoot 
this, fire our ping pong ball and the distance it’ll go.” Later, the angle of projection 
is referred to as “theta” by the teacher.

Table 2.2  (continued)

Line Transcript Photo

34 T: and you determine at thirty degrees [12] 
what’s your distance look like.

[12]
35 T: At forty-five degrees [13] what’s your 

distance look like [14].

[13]

[14]
36 T: At s-, at our range and at sixty, you know and 

so forth, get an idea of what your range is
37 T: so that morning when we go down to the gym 

and we set this up and I throw a number at you
38 T: which will be, it’ll be somewhere between ten 

and twenty.
39 T: So you’re gonna have to try to design, you’re 

gonna have to design your device to be able to fit 
within that parameter, constraints.
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Describing the mapping of theta involves identifying the relations among its 
various manifestations such that these seemingly dissimilar manifestations can be 
perceived as similar (Lobato, 2003). Our analysis reveals seven manifestations in all:

•	 as the measure of the sweep of an arm and hand to depict sample angular values 
(Line 3; photo [1]);

•	 as a drawn angle where the arc of the projectile meets the ground or baseline 
elevation (Line 19; photo [8]);

•	 as a Greek symbol (Line 21), called “theta,” first written as the Greek letter Phi 
(φ) (photo [9]) and then later written as the Greek letter θ (photo [11]);

•	 in drawings and gestures that specify theta as the direction of Vo, the initial 
velocity vector of the projectile that is related trigonometrically to component 
vectors Vx and Vy (Lines 21–23, photo [10]);

•	 as an equation parameter for computing velocity and range (Lines 23–25);
•	 as a physically manipulable quantity on the device students build (“you can 

kinda set your angle hopefully to get, to get that distance”; Line 31),
•	 as the reading from an angular measurement instrument (e.g., protractor; “I actu-

ally want you to be able to gauge these angles on the device and maybe we can 
stick an angle gauge in there somehow to check these angles”; Lines 32–34, 
photos [11] and [12]).

The intended result is a conceptual blend in which the manifestations of theta 
are linked to one another in a cohesive network. Figure 2.2 presents a snapshot from 
the classroom depicting this network structure for theta that, at that point in the 
lesson, is manifest in trigonometric relations, kinematics equations and diagrams, 
and gestures. Figure  2.3 illustrates the network of modal forms of theta used 
throughout the unit.

Fig. 2.2  Image of the whiteboard showing different manifestations of theta

2  An Embodied Theory of Transfer
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Fig. 2.3  The network of modal forms of theta used throughout the unit

Successful transfer exhibited by students via gestural catchment  The third ele-
ment of analyzing transfer within an embodied framework is explicating ways those 
in the learning environment express cohesion. One expression of cohesion is illus-
trated in Photo Transcript 2 (Table 2.3), in which the teacher interacts directly with 
students who have been working in project design teams. To foreshadow, Photo 
Transcript 2 shows that at least two of the students express the cohesion of the 
invariant relation across two different instructional contexts: the formal lecture on 
kinematics given by the teacher, which involves a whole-class participation struc-
ture, and interactions that take place in the machine shop setting, which involve a 
small-group participation structure, which is the focus of the transcript. Here we 
observe the ways in which participants use body-based resources in several ways: to 
express the mathematical role of theta that was depicted in the lecture; as it was 
drawn in their design sketch; as a measured and variable quantity; and in terms of 
its functional role for the project, which aims to control the trajectory of the 
projectile.

At the beginning of Photo Transcript 2, we observe two students (talking over 
one another) in a group of four express to the teacher how the design sketch they 
have drawn provides adjustments to the angle of projection (which they call at 
points “the elevation” and “different angles”) and a way to fix the angle of projection.

Student 1 notes (Line 8, photos [1] and [2]), “That’ll allow you to unscrew it, 
move it up and down,” and Student 2 concurs (Line 9). Especially notable is the 
gesture produced by Student 1 as he describes “move it up and down.” This gesture 
imitates the hand movement that the teacher previously used during the lecture to 
designate the many values theta can take on, thus forming a gestural catchment. 
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Table 2.3  Photo Transcript 2: Day 1

Line Transcript Photo

1 T: Let’s check, you guys. Where are you at?
2 T: [Name] and [Name], what do we have here?
3 S1: We got a, uh, thingy that works.
4 T: Explain what you have goin’ on here.
5 T: ‘Kay, so that is, where’s your sheet with your 

constraints on it?
[Omitted portion]

6 S1: Just a piece of wood to hold onto it.
7 S1: Locking screw right there.
8 S1: That’ll allow you to unscrew it, move it up and 

down (performs gesture three times in quick 
succession) [1] [2].

[1]

[2]
9 S2: (At the same time) Yeah.
10 S1: And then tighten it at whatever elevation you want 

[3].

[3]
11 S2: Different, different angles [4].

[4]
12 S1: A protractor sitting here. With a string with a weight 

on it.
13 S1: So as you tip it, it’ll, that’ll tell you what degree 

you’re tipping it.
14 T: (At the same time) Oh! I like that. That’s nice.
15 S1: So that tells you what degree so we can figure that 

out [5].

[5]
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The student presents an upright (left) hand with flat palm and proceeds to bend at 
the wrist and bring the hand back to upright three times in a couple of seconds, each 
time maintaining a somewhat flat palm. We regard this catchment as evidence that 
this student apprehends how theta is manifest in the design sketch and that it 
aligns with the teacher’s description.

Student 1 continues, “And then tighten it at whatever elevation you want” (Line 10, 
photo [3]). He depicts this action by moving his right hand up to be near the left and 
making a motion typical for tightening a screw. Student 2 further immediately elabo-
rates, “Different angles” (Line 11, photo [4]). In so doing, he, too, makes a gesture for 
the angle theta twice in quick succession. This gesture repeats the gesture produced 
by the teacher during lecture and the gesture produced by Student 1 moments earlier, 
thus continuing to build the gestural catchment and providing further evidence that 
Student 2 also constructed a cohesive account of theta as it relates to their design. The 
students further demonstrate their understanding as reflected in their method of mea-
suring the angle of projection with the clever use of a weighted string moving across a 
protractor that is mounted on the device (Lines 12–15, photo [5]).

In brief, Photo Transcript 2 demonstrates how students express cohesion in this 
PBL activity through a gestural catchment and through connecting language directed 
at their design sketch (which provides a material anchor of one manifestation of 
theta), the mathematics of theta, and the angular measurement device. This 
excerpt also illustrates that the teacher contributes to transfer by using brief but 
important prompts. But it is the activity structure as a whole that really provides the 
mapping of the invariant relation across contexts by forging connections between 
the hands-on design project and the mathematics and physics presentation.

Unsuccessful transfer as inappropriate mapping of the invariant relation  In 
contrast to Photo Transcript 2, which illustrates successful transfer, Photo Transcript 
3 (Table 2.4) involves students who latch onto the wrong adjustable feature, so their 
design varies the initial velocity but not the angle of projection. The students’ 
expressions of the mapping reveal this to be their constructed understanding, rather 
than a process of directly perceiving the invariant relation as labelled by the teacher. 
During this excerpt, the teacher recognizes that the students’ actions reveal that their 
thinking and design is based on the incorrect mapping of the angle theta to their 
device, which is contributing to unsuccessful transfer. In response, the teacher 
attempts to repair the mapping by reinstating the gestural catchment and making an 
explicit, direct mapping between the part of the device that could instantiate theta 
and the mathematical inscriptions that model the influence of theta on projectile 
motion that were previously written on the board.

The exchange in Photo Transcript 3 shows how transfer can be thwarted when 
students construct an inappropriate mapping for the target invariant relation. The 
teacher provides a rich prompt (Line 1), asking, “How are you going to change the 
angle of your trajectory?” invoking the gestural catchment that has come to signify 
theta (photo [1]). The students have designed a catapult that includes rubber bands 
that can be set at different points before their release, altering the tension and there-
fore the speed with which the catapult arm will release. The students see the 
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Table 2.4  Photo Transcript 3 (Unsuccessful Transfer): Day 2

Line Transcript Photo

1 T: Alright now let me ask a question regarding how 
are you going to change the angle of your trajectory 
[1]?

 [1]
[Omitted portion]

2 S2: Right there.
3 S1: We’ll have this rubber band here, pull it down here.
4 S1: And so we have several spokes here so the further 

we pull it down and attach it, that, that changes the 
angle for us [2].

 [2]
5 T: Well I’m wondering if the further you, pull your 

rubber band down–
6 S1: Mmhm.
7 T: –is gonna affect your, velocity, more than your 

angle [3].

 [3]
8 S2: [At the same time] Yeah it’s, well no, this is the 

velocity
9 S2: but what we’re sayin’ is that this is how hard it 

pulls, but then right here [4], where it, where it, 
where the fulcrum is like this actually you can tilt it 
[5].

[4]

[5]
10 S2: [At the same time] The rubber bands control the 

tension but the placement is what really controls...
11 S2: Like. See what we’re saying?

(continued)
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Table 2.4  (continued)

Line Transcript Photo

12 T: So it’s, it, okay so, if I could, suggest, I think that 
[6], you might be able to adjust your angle by, by 
having some type, by controlling where this stops.

 [6]
13 S1: Yeah.
14 T: But that’s probably also gonna affect your, maybe 

affect your velocity.
15 T: What I’m saying is, either that or else you have to 

tip the whole thing.
16 S2: No, we don’t.
17 S2: That’s why, ‘cause the two sides stay put but then 

the top part can, tilt, right there.
18 T: Okay.
19 S2: [At the same time] So the fulcrum can change 

positions, basically.
20 T: Alright. So I think maybe what you need to do is is, 

take into consideration what I just said about–
21 S1: Yeah.
22 T: –being able to control the angle [7].

 [7]
23 T: That’s why we did everything we did here [8]–

 [8]
24 S1: Mmhm.
25 T: –with the math. Because we wanna–
26 S1: (At the same time) The math yeah.
27 T: –be able to adjust the angle of the trajectory.
28 T: I would try to keep, the velocity, the same, 

consistent, throughout the whole, every test that you do 
that that’s consistent

(continued)
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different positions of the rubber bands as taking different angles (see Fig.  2.4), 
which they predict will alter the angle of projection: “So the further we pull it down 
and attach it, that, that changes the angle for us” (Lines 3–4, photo [2]). In response, 
the teacher rightly observes (Line 5) that the catapult arm will release at the same 
angle regardless of the placement of the rubber band, but the change in tension will 
affect the initial speed of the projectile. The teacher points to the design sketch to 
help clarify his critique (photo [3]).

The students do not pick up on this critique but offer a defense (Lines 8–11), 
“See what we’re saying?” This suggests that the students are not merely misinter-
preting the theory or misreading their own design sketch. The second student 
speaker (Lines 8–9) offers this account, “Well, no, this is the velocity, but what 
we’re sayin’ is that this is how hard it pulls, but then right here, where it, where it, 
where the fulcrum is like this actually you can tilt it” and demonstrates this idea in 
photos [4] and [5].

A reasonable interpretation is that the students operate with a preexisting “onto-
logical coherence” (Slotta & Chi, 2006) for velocity exclusively as a scalar measure 
of speed of the projectile, which interferes with their adoption of a new conceptual-
ization of velocity as a vector quantity (i.e., Vo) that includes both speed and direc-
tion. Prior ontological commitments of this sort are notoriously difficult to alter. 
Here we observe such a case from two students in defense of their design when the 
first student says (Line 17), “That’s why, ‘cause the two sides stay put but then the 
top part can, tilt, right there,” and the second (overlapping) says (Line 19), “So the 
fulcrum can change positions, basically.” In neither case, however, will this design 
provide the control of the angle of projection that the project requires.

Table 2.4  (continued)

Line Transcript Photo

29 T: and so all you’re gonna change once you, one you 
decide what that velocity has to be, all you’re gonna 
change is your angle [9].

 [9]
30 S1: Yeah.
31 T: Okay?
32 S1: Mmhm.
33 T: I don’t really want you to use the tension on the 

rubber bands, as, the only control.
34 T: I want you to have an angle adjustment [10].

 [10]
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An interesting part of this exchange comes when the teacher identifies the break 
in cohesion. By way of repair, he offers two mapping acts. First, he reinvokes the 
theta gesture but this time does so in the same plane as the paper design sketch 
(photo [7]) while saying (Line 22) “being able to control the angle.” In this way, the 
teacher connects the variation of the angle to the students’ design sketch. Second, 
the teacher makes explicit reference, with speech, gesture, and upturned eye gaze 
(photo [8]), to the mathematical derivation still on the whiteboard at the front of the 
room and starts out saying (Lines 23–29), “that’s why we did everything we did 
here with the math,” and ends with, “all you’re gonna change is your angle.” The 
students acknowledge this midway and repeat (Line 26), “The math, yeah,” but they 
seem disappointed by the teacher’s reaction to their design.

2.5  �Reflections on an Embodied Theory of Transfer

In this chapter, we have advanced the argument that transfer is fundamentally an 
embodied process. This is made especially evident when studying PBL settings. 
Learning and teaching in PBL settings are embedded in rich, multimodal contexts 
where content knowledge and information are often extended across a variety of 
semantic resources, including objects, inscriptions, and other actors. We assume 
that learners and teachers have a natural drive for cohesion in the learning experi-
ence—learners, to experience continuity, and teachers, to provide a meaningful and 
engaging learning environment in which their students achieve the desired under-
standings. We observe that both teachers and learners engage embodied processes 
as they map invariant relations across various modal forms. This mapping enables 
agents in educational settings to apply prior modes of perceiving and acting to new 
contexts and to create movements that will activate those invariant relations through 
transduction. Mapping may be explicit, as in analogical mapping; implicit, as in the 

Fig. 2.4  (a) One group’s original design sketch with (b) the vectors and angles added that label 
the correct and incorrect matches to theta
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case of priming relational structures; or some combination, as may be seen with 
conceptual blends. Teachers and students express cohesion by connecting different 
contexts and different modal forms via speech, actions, and gestures, as when a 
teacher simulates picking up symbols simultaneously from both sides of an equa-
tion or when a student invokes a gestural catchment to indicate how a structural 
property of a device enacts the relationship depicted in a mathematical model. We 
now consider some notable aspects of the proposed theory, implications for educa-
tional practice, and open research questions that may advance understanding of 
transfer.

We have argued that there are three core elements to embodied transfer: (a) iden-
tifying the central invariant relation that is manifest in multiple contexts, representa-
tions, or modalities; (b) mapping that relation across those contexts, representations, 
or modalities; and (c) expressing cohesion across the disparate manifestations of 
that invariant relation. We view the order of these three elements as somewhat fluid. 
Mapping across contexts—performed by a teacher, for example—might precede a 
student’s awareness of the central invariant relation. The mapping can provide a 
means for comparison that enables the learner to perceive connections between con-
texts and inscriptions, as when students experience that they are performing similar 
actions in ontologically different contexts. The actions performed in the new con-
text can activate common cognitive states through transduction, which then help the 
student to notice the invariant relation in the new context, thereby enabling mapping 
across the contexts. Expression can also play a role in making implicit mappings 
more explicit for the learner, as when students’ reflections on their motoric behav-
iors bring these relations into conscious awareness. This may be one reason why 
self-explanation is a powerful mechanism for promoting transfer (see, e.g., Rittle-
Johnson, 2006).

An important assumption of an embodied theory of transfer is that transfer oper-
ates within a predictive architecture and a set of feedforward mechanisms that ready 
the system to act. Consequently, transfer is not an occasional process but a continual 
one. A system always looking to act will also activate cognitive states in accord with 
its actions. This offers a theoretical basis for understanding near and far positive 
transfer as well as negative transfer. In this framework, near transfer is especially 
likely when modes of perceiving and acting from an earlier context are activated and 
readily apply in a new context. The teacher simulating lifting the drawn objects off 
of the drawn pan balance is one such case, given that these affordances for a physi-
cal pan balance would normally apply. We describe as far transfer those cases in 
which the earlier modes of perceiving and acting are not directly applicable and that 
require some modification and some enhanced mapping support to establish corre-
spondences. Negative transfer is expected when the mapping is salient but the asso-
ciated modes of perceiving and acting are no longer relevant. One example is the 
“add all the numbers” error commonly made by elementary and middle school stu-
dents solving mathematical equivalence problems (e.g., offering “15” as a solution 
for a problem such as 3 + 4 + 5 = 3 + __; Knuth, Stephens, McNeil, & Alibali, 2006; 
McNeil, 2014; Perry, Church, & Goldin-Meadow, 1988).
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Our proposal also raises the issue of false transfer, which may occur when actors 
apply modes of perceiving and acting that they expect to be applicable but that 
match only at a surface level and which therefore do not yield successful transfer (in 
terms of experts’ expectations). The persistence of false transfer in the face of feed-
back may be due to students’ prior ontological commitments that offer strong 
matches to the current circumstances (Chi, Roscoe, Slotta, Roy, & Chase, 2012; 
Slotta & Chi, 2006). One example is treating velocity as a scalar measure of speed 
in a design project that requires that velocity be treated as a vector quantity specify-
ing both speed and direction. The activation of inappropriate modes of perceiving 
and acting can help explain why tasks that share surface structure but different 
invariant relations so readily lead to false transfer.

As these classroom examples make clear, transfer is an embedded process, situ-
ated in a particular physical and sociocultural learning context. PBL is also an 
extended process such that multiple actors (often a teacher and students) are engaged 
in transfer, mapping invariant relations across modal forms. The contributions of 
both teachers and learners to transfer suggest that transfer is a fundamentally social 
activity (Lobato, 2006). This view suggests several powerful ways to promote trans-
fer, particularly in complex learning environments. In past work (Nathan, Wolfgram, 
et al., 2017), we documented some of the key processes that teachers draw on to 
foster cohesion across representations, contexts, and settings: Teachers actively 
bridge ecological shifts when learning takes place in different ecological contexts 
(such as the classroom and the machine shop), and teachers check that their students 
are aware of the continuity they strive for; teachers coordinate ideas across different 
spaces using common labels, thoughtful juxtaposition, gestural catchments, and 
deixis in both speech and gesture; and they project invariant relations forward and 
backward in time to promote temporal continuity. Our position is that these peda-
gogical processes are integral to transfer. Excluding the teacher from a theory of 
transfer risks creating a theory that is unable to account for transfer as it occurs in 
authentic settings.

Our theory also highlights the importance of understanding the fine structure of 
the ways in which teachers and students express cohesion. In this regard, we draw 
on Goodwin’s (2013) observation that speakers commonly layer semiotic fields one 
upon another during discourse, a process he termed lamination. In our view, teach-
ers and students may laminate different representations together—that is, layer 
them together in space or time using language, gesture, or action—thereby fusing 
them conceptually. For example, consider the teacher (described earlier) who pro-
duced the same gesture of removing objects from two sides over a drawing of a pan 
balance and then over a symbolic equation representing the state of the pan balance. 
With this catchment gesture, the teacher laminates together the pan balance and the 
equation. She organizes elements of these manifestations of the invariant relation 
with respect to one another and uses gestures to express their correspondences.

An embodied account of transfer can also provide insight into why certain 
instructional approaches have proven effective. The proposed theory naturally 
explains the success of instructional approaches that bring actions in target contexts 
into close alignment with actions in the original source context. For example, 
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bridging instruction (Nathan, Stephens, Masarik, Alibali, & Koedinger, 2002) relies 
on mapping students’ invented strategies for algebraic reasoning to those that 
experts have identified as important for achieving curricular goals. Concreteness 
fading (Fyfe et  al., 2014) helps learners to ground formal notations in terms of 
familiar modes of perceiving and acting, applying the resulting actions to a broader 
range of contexts.

An embodied account of transfer also has implications for assessment practices. 
Regarding formative assessment, it is well documented that learners sometimes 
exhibit ways of thinking in actions and gestures even before they have explicit 
awareness of their new understanding or before they have constructed verbal 
accounts of their new ways of thinking (Church & Goldin-Meadow, 1986; Goldin-
Meadow, Alibali, & Church, 1993). Teachers who notice these nonverbal expres-
sions can more accurately model students’ conceptual development and can be 
responsive with their own pedagogical actions. Even untrained adults generate more 
accurate descriptions of children’s understandings when they attend to children’s 
gestures along with their verbal utterances (Goldin-Meadow, Wein, & Chang, 
1992). Improving teachers’ skills for noticing students’ gestures can greatly enhance 
teaching and learning (Roth, 2001).

Summative assessment is generally more evaluative, taking place at the end of a 
major curricular unit. Summative assessment practices are dominated by students’ 
verbalizable knowledge, often excluding learners’ embodied forms of expression 
and therefore underestimating student knowledge. Further, assessment methods 
using computer keyboards can interfere with body-based forms of expression and 
can even impair students’ thinking (Nathan & Martinez, 2015).

An embodied account of transfer raises several important questions for future 
research. First, what kinds of discourse practices contribute to students’ identifica-
tion and mapping of invariant relations across contexts? For example, to what extent 
are instructional practices such as using common labels or producing gestural catch-
ments valuable for supporting students’ mapping across contexts? Relatedly, which 
discourse practices help learners progress from an implicit, action-based under-
standing of invariant relations to explicit, verbalizable knowledge?

Second, do effective approaches to mapping depend on the target concept or on 
the age, prior knowledge, or cognitive skill of the learner? It is possible that some 
learners may benefit from more explicit mapping, whereas others may do better 
with more implicit approaches. These individual differences, in turn, may be due to 
differences in learners’ prior knowledge or in their patterns of cognitive skills.

Third, what are the consequences of variations in mapping practices or variations 
in expressing cohesion? For example, do some types of mapping lead to more dura-
ble knowledge or to greater gains in students’ conceptual understanding of the tar-
get mathematical concepts? Does expressing cohesion in gestures or speech help 
learners to stabilize that knowledge and make it more explicit? These questions 
raise further issues about underlying mechanisms, which can be construed at a vari-
ety of different grain sizes. One potentially fruitful level of analysis involves consid-
ering the management of attention in social interactions that focus on transfer. How 
do teachers’ mapping practices affect students’ attention to aspects of the context or 
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to features of the particular representations being linked? More generally, how do 
contextual supports and social guidance of transfer influence learners’ attention, 
and how is attention involved in identifying invariant relations and in mapping 
across contexts?

Finally, given that our account has emphasized the social aspects of transfer, how 
do dimensions of social relationships, such as warmth, respect, and power, affect 
patterns of transfer? For example, are students especially likely to attend to novel 
mappings expressed by social partners who display respect for their ideas and con-
cern for their learning (Gutiérrez, Brown, & Alibali, 2018)? How does the history of 
a social relationship affect the negotiation of transfer by individuals in that 
relationship?

Although there are many questions yet to be addressed, we believe that an 
embodied perspective yields a novel and valuable conceptualization of transfer. 
There is increasing awareness among both scholars and practitioners of the embod-
ied nature of cognition (e.g., Barsalou, 2008; Glenberg, 1997; Rosenfeld, 2016; 
Wilson, 2002). In our view, an embodied perspective on transfer is necessary 
because transfer occurs in a rich physical and social world. By focusing on invariant 
relations, how they are mapped across contexts, and how cohesion across contexts 
and across modalities is expressed and negotiated, we open new avenues of inquiry, 
and these avenues promise to shed light on transfer as it occurs in PBL settings and 
other complex learning contexts.
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