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Abstract 

We document the phenomenon of gestural insights, which reveal ways nonverbal expressions 

exhibit students’ mathematical reasoning. Thoughts conveyed through spontaneous gestures 

often differ from thoughts conveyed solely through speech. Undergraduate students performed 

directed actions, conceptually relevant body movements designed to foster conceptual 

understanding, before evaluating a geometric conjecture. Subsequently, students expressed 

gestural insights (physical expressions of correct conceptual understanding) with their bodies 

even when they were unable to verbalize their mathematical insights. These mismatches are the 

focus of two case studies that demonstrate how students recruit body-based resources to support 

conceptual thinking. We invite educators to consider the benefits of curating curricula and 

assessments that allow students to express knowledge and conceptual understandings through 

nonverbal and verbal means.  



When Conceptualization Gets Moving: Exploring How Directed Actions Complement 

Gestural Insights for Generating Geometric Reasoning 

The central objective of this paper is to describe two cases where students exhibit mathematical 

insights about geometric proof reasoning through gestures that are otherwise absent in their 

speech. We view mathematical proof as a multimodal discourse practice (Gresalfi & Cobb, 

2006). When exploring geometric proofs, teachers and students often communicate key 

mathematical ideas using descriptive language, verbal inference, and gestures (Alibali & Nathan, 

2012; Healy & Hoyles, 2000; Marghetis et al., 2014). Gestures produced during intellectual and 

social activity are a crucial form of multimodal discourse that reflect and impact a speaker’s 

cognitive processes. Several researchers have shown that a learner’s knowledge conveyed 

through gestures can be different from the knowledge conveyed through speech (Church & 

Goldin-Meadow, 1986; Goldin-Meadow et al., 1993), and that some knowledge is conveyed only 

through gestures (Hegarty et al., 2005; Pier et al., 2019).  

In the following case studies, we investigated two conceptual gesture-speech mismatches 

(among many examples) from two college students who produced incorrect verbal insights for a 

geometric conjecture while simultaneously producing correct gestural insights. Specifically, we 

explored how these gestural insights (i.e., non-verbal expressions) complement ways students 

conceptualized and embodied geometric thinking. 

Theoretical Framework 

In pioneering work, Goldin-Meadow and colleagues found that children may express their 

understandings of mathematical concepts gesturally before they are able to articulate their 

understandings verbally. In fact, children often gesture correctly about emerging concepts while 

providing a verbal response that is incorrect or incomplete. For example, children learning to 



think algebraically may gesture their awareness of the need to balance two sides of an equation 

before they can verbally express the equality relation. These mismatches between gesture and 

speech are indicative of a transitionary period of knowledge acquisition and conceptualization, 

where gestures reveal the “leading edge” of students’ conceptual learning (Church & Goldin-

Meadow, 1986; Goldin-Meadow et al., 1993). Further, they reveal how learners' understanding 

of mathematical concepts is embodied.  

Activation of sensorimotor neural systems can influence one’s cognitive states (Thomas, 

2013). Nathan (2017) refers to this process as action-cognition transduction (ACT) and 

identified two testable predictions: (1) Directed actions, physical movements that learners are 

directed to perform as part of an intervention, can induce cognitive states that prompt reasoning 

and problem-solving (Nathan & Walkington, 2017); and (2) directed actions can influence 

cognitive processes through nonverbal means. Leading up to the ACT hypothesis, Nathan et al. 

(2014) found that performing task-relevant arm movements prior to proof activities contributed 

to superior mathematical insight, illustrating how mathematical ideas are often expressed through 

non-verbal and verbal forms of reasoning.   

We distinguish between the directed actions we may elicit from learners and the 

spontaneous gestures learners produce while communicating their thinking. Directed actions and 

spontaneous gestures can each engage body-based systems (typically hands and limbs) to 

represent mathematical objects and their transformations. Gestures are forms of bodily action 

(Alibali et al., 2014) that spontaneously co-occur with speech and thought (McNeill, 2008; Chu 

& Kita, 2009) and primarily effect one’s verbal, deliberative forms of reasoning. Alternatively, 

directed actions are planned interventions that are not spontaneous and do not necessarily 

coordinate with learners’ speech. They can, like gestures, affect learners’ intuitions and insights 



(Nathan & Walkington, 2017). As scaffolds, directed actions can even prime gesture production 

during a learner’s explanations (Donovan et al., 2014). For example, Cook & Goldin-Meadow 

(2006) showed that either observing or copying a teacher’s movements that represent an 

equalizer strategy for equivalence problems increased both the type and number of gestures that 

students spontaneously produced during instruction. Performing gestures, in turn, led to better 

problem-solving performance on a post-test, compared to students who expressed a solution 

strategy in speech only.  

The current study documents cases of nonverbal, motor-based forms of understanding 

which we identify as “gestural insights.” We explore three research questions: (RQ1) How do 

students express mathematical insights through their movements? (RQ2) How can directed 

actions contribute to mathematical insights? (RQ3) How can directed actions prime gestural 

insights?   

Methods  

Participants & Procedure  

As part of a larger study investigating the role of directed action and prediction in geometric 

reasoning, undergraduate students (N = 127) were recruited from a large Midwestern university 

in the United States. Prior to arriving, participants were randomly assigned into one of four 

groups using a 2x2 between-subjects design: perform directed actions (DA=Yes; DA’=No) and 

generate predictions (P= Yes; P’=No): (1) Condition DA+P, participants mimicked an 

incomplete sequence of directed actions and then were asked to predict a “possible” third action; 

(2) DA+P’, participants mimicked the series of three directed actions but made no predictions; 

(3) DA’+P, participants were not exposed to directed actions but were subsequently asked to 

“imagine” movements that could enact the geometric transformation of each conjecture; (4) in 



DA’ +P’ (i.e., the control group), participants received no directed actions and made no 

predictions. 

Participants took part individually in experimental sessions via the Blackboard 

Collaborate Ultra software platform. This study was run exclusively online because of the 

COVID-19 pandemic. Participation was video recorded. For each task, participants were 

prompted to read a geometric conjecture (see Figure 1). Directed actions for each conjecture 

were created using the pose editor, a resource from The Hidden Village (THV), an embodied 

video game to promote mathematical reasoning (Nathan & Swart, 2020; Figure 2). The set of 

directed actions for each conjecture was derived from prior observations of students' spontaneous 

gestures during successful proof production (Nathan & Walkington, 2017; Figure 3).  

Participants completed each task by answering a prompt to consider the statement's 

veracity (i.e., always true or ever false) and provide their verbal justification. After completing 

all eight conjectures (see Table 1), participants were asked to complete a series of surveys about 

general geometry knowledge, spatial reasoning, interest in geometry, and demographic 

information.  

Data Sources, Coding & Case Selection  

Video recordings of participants’ online actions and verbal responses were transcribed and coded 

for correct mathematical insights expressed through movements and speech, based on pre-

established criteria. Gestural insight had two defining characteristics: (1) mathematically 

relevant movements while a participant verbally justifies their evaluation of the truth of a 

geometric conjecture; and (2) the spoken justification in isolation does not invoke relevant, 

generalizable mathematical properties.  



 Across the corpus, we identified 42 cases of gestural insight for given conjectures, 

generated by 33 participants (see Table 2). For the current investigation, only participants from 

the DA + No P group who generated gestural insight were selected since these participants 

mimicked directed actions but were not prompted to predict the continuation of these 

movements. This selection allows us to focus on the possible effects of performing directed 

actions while excluding the possible effects of making a prediction.  

The current study focuses on gestural insights for one conjecture — The diagonals of a 

rectangle always have the same length. This conjecture is neither the most nor least likely to 

elicit gestural insights (Table 2), and therefore provides a valuable illustration of the gestural 

insight phenomenon. From this subset, researchers identified two different ways that participants 

demonstrated their gestural insights: mimicking the directed actions from the intervention or 

producing spontaneous gestures that did not mimic the directed actions. We selected two cases 

that illustrate each of these two forms of gestural insight.  

Gestures produced while proving each conjecture were coded as representational and 

dynamic depictive gestures. Representational gesture codes apply when participants depict 

semantic content, either literally or metaphorically, by virtue of handshape or motion (Alibali et 

al., 2001). Dynamic depictive gesture codes capture motion-based transformations of 

mathematical entities (Garcia & Infante, 2012). For example, formulating a parallelogram using 

two vertical arms is a representational gesture. A dynamic gesture is coded when the arms lean, 

skewing the sides of the parallelogram. Previous research has demonstrated that dynamic 

gestures are significantly correlated with the relative chance of producing correct mathematical 

insights (Nathan et al., 2021).  

Results & Discussion 



Case 1: Directed Action mimicry  

In this first case (Figure 4), the student (S1) first asserts that the diagonals of a rectangle must be 

the same length, which reflects their intuition about the conjecture (Transcript #1, Line 1). S1 

then holds their arms vertically on both sides of their body to visually represent the rectangle 

they are mentally constructing (Line 2), which mimics the second pose in the directed action 

sequence (Figure 3.2). As S1 says, “I rotate one to create a diagonal” (Line 3), they perform a 

dynamic depictive gesture, rotating their right arm to create a diagonal. The end position mimics 

the last pose from the directed action sequence (Figure 3.3). S1 moves back to the original 

position with both arms vertical before making a diagonal with their right hand and matching the 

first pose in the directed action sequence (Figure 3.1). They explain that the diagonals will “hit 

[their] arm in the same spot, regardless of which side it’s on” (Line 4).  S1’s gestures reveal their 

understanding that diagonals intersect the bottom corners of the rectangle and must therefore 

have the same base angles in order to intersect the top corners of the rectangle.  

 S1 makes no mention of the mathematical properties of rectangles, such as their 

congruent and parallel opposite sides. S1 verbally references a specific rectangle in Line 2 rather 

than creating a generalized rationale for why this conjecture must always be true. Thus, it is not 

apparent through this verbal explanation alone whether S1 understands why this conjecture is 

true. Non-verbally, S1 gestures that a rectangle has a set of congruent and parallel opposite sides 

(Line 2). S1 then shows that both diagonals must always be equal (Lines 3-4).  

 

Case 2: Spontaneous Gestures  

The student (S2; Figure 5) begins their verbal explanation by asserting the conjecture is true 

(Transcript #2; Lines 1-5). S2 then describes how the diagonals will each be the same length 



(Lines 6-9). During this, S2 performs multiple representational gestures depicting the two 

diagonals using their right index finger to trace the diagonals in the air. Acknowledging their 

inability to verbally explain their reasoning (Line 7), S2 clarifies their thinking (Line 8). Again, 

S2 draws a diagonal with their right index figure (a third representational gesture), then uses both 

hands to “pick it up and turn it,” forming the second diagonal.  

Like S1, S2 does not provide a verbal explanation for why they believe the conjecture 

must be true, but their gestures reveal their mathematical reasoning. However, the cases of S2 

and S1 differ in several ways. First, neither S2’s verbal rationale nor gestures explore the 

properties of rectangles or similar triangles. S2 does not explicitly describe or represent this 

rectangle in gesture. While S1 and S2 both describe and demonstrate a rotation transformation, 

S2’s gestures suggest an understanding of the rotational symmetry of a rectangle since S2’s 

dynamic depictive gestures of rotating (or “turning”) the diagonal (Line 8), produce an 

equivalent diagonal in the other corners. Second, S2 explicitly shows metacognitive thinking 

(Line 7), awareness that they do not have the ability to verbalize their understanding. This 

awareness may drive S2’s rephrasing and production of different gestures (Lines 8-9). Third, S2 

does not mimic the gestures from the directed action sequence. Instead, S2 uses their index 

finger to draw representations and uses both hands to (virtually) “pick up” and “rotate” the 

imagined diagonals using a dynamic depictive gesture. This gesture sequence suggests S2 did not 

recognize the relevance of the directed actions to the conjecture or felt that the directed actions 

were insufficient to demonstrate their understanding.   

Significance 

These cases show that students who were unable to provide verbal mathematical insights were 

able to demonstrate their understanding through gestures. Many studies on geometry proof 



processes—and mathematics more generally—focus on verbal descriptions of mathematical 

insights (e.g., Healy & Hoyles, 2000; Walkoe, 2019). We believe that a potentially rich source of 

nonverbal formative assessment information is often overlooked. Future work needs to explore 

the conditions under which gestural insights are produced and how they can inform teachers’ 

instructional practices. 

 Gestural insights, often exhibited as gesture-speech mismatches, may indicate that 

students are starting to extend their current zone of proximal development (Goldin-Meadow et 

al., 1993). One case presented here demonstrates how directed actions may scaffold students’ 

geometric reasoning, offering an embodied intervention for fostering conceptual 

reasoning. Future work will investigate if the findings presented here generalize with a larger 

sample size, the efficacy of direct actions as a scaffold for geometric reasoning, and the possible 

role of prediction in gestural insight and geometric reasoning.  

 

  



References 

 

Alibali, M. W., Boncoddo, R., & Hostetter, A. B. (2014). Gesture in reasoning: An embodied 

perspective. In The Routledge handbook of embodied cognition (pp. 168-177). Routledge. 

Alibali, M. W., Heath, D. C., & Myers, H. J. (2001). Effects of visibility between speaker and 

listener on gesture production: Some gestures are meant to be seen. Journal of Memory 

and Language, 44(2), 169-188. 

Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: 

Evidence from learners' and teachers' gestures. Journal of the learning sciences, 21(2), 

247-286. 

Chu, M., & Kita, S. (2009). Co-speech gestures do not originate from speech production 

processes: Evidence from the relationship between co-thought and co-speech gestures. In 

Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 31, No. 31). 

Church, R. B., & Goldin-Meadow, S. (1986). The mismatch between gesture and speech as an 

index of transitional knowledge. Cognition, 23(1), 43-71. 

Cook, S. W., & Goldin-Meadow, S. (2006). The role of gesture in learning: Do children use their 

hands to change their minds? Journal of cognition and development, 7(2), 211-232. 

Donovan, A., Boncoddo, R., Williams, C. C., Walkington, C., Pier, E. L., Waala, J., et al. (2014). 

Action, gesture and abstraction in mathematical learning. San Diego, CA: Thematic 

Panel presented at the Sixth Conference of the International Society for Gesture Studies. 

Garcia, N., & Infante, N. E. (2012). Gestures as facilitators to proficient mental modelers. In L. 

R. Van Zoest, J.-J. Lo, & J. L. Kratky (Eds.), Proceedings of the 34th Annual Meeting of 

the North American Chapter of the International Group for the Psychology of 

Mathematics Education (pp. 289–295). Kalamazoo, MI: Western Michigan University. 

Goldin-Meadow, S., Alibali, M. W., & Church, R. B. (1993). Transitions in concept acquisition: 

using the hand to read the mind. Psychological review, 100(2), 279. 

Gresalfi, M. S., & Cobb, P. (2006). Cultivating students’ discipline-specific dispositions as a 

critical goal for pedagogy and equity. Pedagogies, 1(1), 49–57. 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for research in 

mathematics education, 31(4), 396-428. 



Hegarty, M., Mayer, S., Kriz, S., & Keehner, M. (2005). The role of gestures in mental 

animation. Spatial Cognition and Computation, 5(4), 333-356. 

Marghetis, T., Edwards, L. D., & Núñez, R. (2014). More than mere handwaving. Emerging 

perspectives on gesture and embodiment in mathematics, 227-246.  

McNeill, D. (2008). Gesture and thought. University of Chicago Press. 

Nathan, M. J. (2017). One function of gesture is to make new ideas. In Why Gesture?: How the 

hands function in speaking, thinking and communicating (pp. 175-196). John Benjamins 

Publishing Company, Amsterdam, the Netherlands. 

Nathan, M. J., Schenck, K. E., Vinsonhaler, R., Michaelis, J. E., Swart, M. I., & Walkington, C. 

(2021). Embodied geometric reasoning: Dynamic gestures during intuition, insight, and 

proof. Journal of Educational Psychology, 113(5), 929 – 948.  

Nathan, M. J., & Swart, M. I. (2020). Materialistic epistemology lends design wings: 

Educational design as an embodied process. Educational Technology Research and 

Development, 1-30. 

Nathan, M. J., & Walkington, C. (2017). Grounded and embodied mathematical cognition: 

Promoting mathematical insight and proof using action and language. Cognitive 

research: principles and implications, 2(1), 1-20. 

Nathan, M. J., Walkington, C., Boncoddo, R., Pier, E., Williams, C. C., & Alibali, M. W. (2014). 

Actions speak louder with words: The roles of action and pedagogical language for 

grounding mathematical proof. Learning and Instruction, 33, 182-193. 

Pier, E. L., Walkington, C., Clinton, V., Boncoddo, R., Williams-Pierce, C., Alibali, M. W., & 

Nathan, M. J. (2019). Embodied truths: How dynamic gestures and speech contribute to 

mathematical proof practices. Contemporary Educational Psychology, 58, 44-57. 

Thomas, L. E. (2013). Spatial working memory is necessary for actions to guide thought. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(6), 1974. 

Walkoe, J. (2019, May). Teacher Noticing of Student Thinking as Expressed Through Gesture 

and Action. Presentation to National Science Foundation Synthesis and Design 

Workshop: The Future of Embodied Design for Mathematical Imagination and Cognition 

(May 20-22, 2019). Madison, WI. 

 

  



Tables & Figures 

 

 

Table 1  

 

Eight Geometric Conjectures  

 

Labels Conjecture Text Verity 

Triangle Inequality The sum of the lengths of two sides of a triangle is always 

greater than the length of the third side. 

True 

Similar Triangle For a triangle that is similar to triangle ABC, the side opposite 

to angle B must have the same length. 

False 

Parallelogram The area of a parallelogram is the same as the area of a 

rectangle with the same length and height. 

True 

Diagonals The diagonals of a rectangle always have the same length  True 

Opposite Angles The opposite angles of two lines that intersect each other are 

always the same  

True 

Angles Sides In triangle ABC, if Angle A is larger than Angle B, then the 

side opposite Angle A is longer than the side opposite Angle 

B  

True 

Halve Rectangle If you double the length and width of a rectangle, then the 

area is exactly doubled.  

False 

Rotate Reflect Reflecting any point over the x-axis is the same as rotating the 

point 90 degrees clockwise about the origin.  

False 

 

 

 



Table 2  

 

Cases of Gestural Insight per Conjecture Across the Four Experimental Conditions 

Conjecture DA + P DA + No P No DA + P No DA + No P Total 

Triangle Inequality 0 0 0 1 1 

Similar Triangle 0 0 0 0 0 

Parallelogram 1 0 1 0 2 

Diagonals 2 5 1 1 9 

Opposite Angles 6 6 9 3 24 

Angles Sides 1 2 3 0 6 

Halve Rectangle 0 0 0 0 0 

Rotate Reflect 0 0 0 1 1 

Total 10 13 14 5 42 

Note. DA = Directed Action condition. P = Prediction Condition. Only participants from the DA 

+ No P group were examined in this investigation. 

 

 

 

Figure 1 

A Geometric Conjecture “The Diagonals of a rectangle always have the same length.”  

 
  



Figure 2 

The Hidden Village Pose Editor

 

Note. The Hidden Village Pose Editor. Center. The user can manipulate the avatar into three 

poses (i.e., starting, intermediate, and target poses) to represent geometric objects and 

transformations relevant to the conjecture. 

 

 

Figure 3 

Directed Actions for the Diagonals conjecture  

Note. The conjecture text reads, “The diagonals of a rectangle always have the same length.” 

These directed actions are intended to convey a key insight related to this conjecture – that the 

diagonals must be congruent because they each are the hypotenuses of left and right triangles 

with equal arm lengths. 



Figure 4 

 

Transcript #1:  

 

 
 

Transcript #1:      [1] The statement is always true  

[2] because when I hold a, make a rectangle of my arms,  

[3] I rotate one to create a diagonal,  

[4] it's gonna hit my arm in the same spot, regardless of which  

side it's on. 

 

Figure 5 

 

Transcript #2:  

 

Transcript #2:     [1] That seems to be true again.  

[2] Oh my goodness, I haven't taken geometry in so long, but I  

think that.  

[3] Now, I'm just picturing the rectangles in my head.  

[4] I'm gonna say true.   

[5] And I'm just, it's just a rectangle, it's a rectangle.  

[6] so if you go from either the diagonals, this is gonna, it's  

gonna be the same.  

[7] I don't really know how to explain it very well,  

[8] but all the rectangles that I can picture in my head, the  

diagonal, both the diagonals would be the same.  

[9] Like if you took one diagonal and you just like picked it up  

and turned it and put it on the other diagonal, that would be 

the same.   


