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 Abstract

Grounded and embodied cognition (GEC) serves as a framework to investigate mathematical 

reasoning for proof (reasoning that is logical, operative and general), insight (gist) and intuition 

(snap judgment). Geometry is the branch of mathematics concerned with generalizable properties 

of shape and space. Mathematics experts (N=46) and non-experts (N=44) were asked to judge the 

truth and to justify their judgments for four geometry conjectures. Videotaped interviews were 

transcribed and coded for occurrences of gestures and speech during the proof production process.

Analyses provide empirical support for claims that geometry proof production is an embodied 

activity, even when controlling for math expertise, language use and spatial ability. Dynamic 

depictive gestures portray generalizable properties of shape and space through enactment of 

transformational operations (e.g., dilation, skewing). Occurrence of dynamic depictive gestures 

and non-dynamic depictive gestures are associated with proof performance, insight, and intuition, 

as hypothesized, over and above contributions of spoken language. Geometry knowledge for 

proof may be embodied and accessed and revealed through actions and the transformational 

speech utterances describing these actions. These findings have implications for instruction, 

assessment of embodied knowledge, and the design of educational technology to facilitate 

mathematical reasoning by promoting and tracking dynamic gesture production and 

transformational speech.

Educational Impact and Implications Statement

How do mathematical intuitions arise, and how can they help with advanced forms of reasoning 

such as geometry proofs? One idea is that intuitions arise from body movements that allow people

to directly experience mathematical ideas and relationships. We analyzed videotaped interviews 

of 46 mathematics experts and 44 non-experts and found they are each more likely to show 

correct mathematical intuitions and generate mathematically valid proofs when they produced 

gestures while speaking. The research findings contribute to theories of embodied cognition by 

showing that people can tap into nonverbal ways of mathematical thinking. This work is 

important for education in STEM (science, technology, engineering, and mathematics) because it 

demonstrates that embodied cognition applies beyond basic mathematics such as counting and 

computation to conceptual forms of reasoning involved in geometry proofs. 
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Embodied Geometric Reasoning: Dynamic Gestures During Intuition, Insight, and Proof

Making meaning of mathematical ideas and notational systems is of central importance to 

education (e.g., Schoenfeld, 1992). It is in this context that scholars increasingly have turned to 

principles of grounded and embodied cognition (GEC; Barsalou, 2008; Glenberg & Robertson, 

2000; Nathan, 2008). Lakoff and Nunez (2001) proposed a theoretical account of how embodied 

cognition can explain many of the most significant mathematical developments in history. In their

account, grounding is achieved through conceptual metaphors that link mathematics to physicality

and movement, which plays a central role explaining that mathematical ideas ultimately come to 

have meaning by being grounded in sensory-motor processes.  

In addition to language-based processes, such as metaphor, scholars have observed ways 

that people engaged in mathematical activity spontaneously use their bodies as a direct means to 

explore and express their reasoning (Alibali & Nathan, 2012; Chu & Kita, 2011, 2016; Edwards, 

2003; Marghetis et al., 2014; McNeill, 1992). For example, Yoon and colleagues (2011) 

documented how gestures during a conceptual calculus activity supported the generation of new 

insights regarding the relationships of a function to its derivative and its antiderivative. Others 

have shown the central role of gestures for advancing learning of a range of mathematical ideas, 

including equations (Goldin-Meadow, Nusbaum, Kelly & Wagner, 2001), symmetry (e.g., 

Valenzeno, Alibali, & Klatzky, 2003), ordinal numbers (Sinclair & de Freitas, 2014), 

multiplicative reasoning (Abrahamson & Trninic, 2015), graphs (Bieda & Nathan, 2009), 

beginning algebra (Alibali & Nathan, 2012; Nemirovsky & Ferrara, 2009), geometry (Smith, 

2018), and complex numbers (Soto-Johnson & Troup, 2014), among others.

An emerging literature on GEC (Barsalou, 2008; Shapiro, 2010) suggests that reasoning is

connected to body-based processes, including gesture (Alibali & Nathan, 2012; Goldin-Meadow, 
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2005; Edwards, Ferrara & Moore-Russo, 2014) and physical and simulated action (Beilock & 

Goldin-Meadow, 2010; Hostetter & Alibali, 2019). Still, there is a need for studies that directly 

investigate the role of body-based processes in complex reasoning activities, and for theoretical 

advancements that provide testable hypotheses for when and how body-based processes affect 

reasoning. Investigations of mathematical reasoning, in particular, are of interest, in part because 

of the theoretical appeal of embodied accounts of highly generalized, symbolic, and abstract 

forms of thinking (e.g., Abrahamson & Lindgren, 2014; Lakoff & Núñez, 2000). 

To date, empirical studies of embodied mathematical cognition tend to focus on the 

mathematics of numbers and operations, such as arithmetic, probability, and algebra 

(Abrahamson, 2009; Alibali, Church, Kita, & Hostetter, 2014; Goldin-Meadow, Cook, & 

Mitchell, 2009; Howison, Trninic, Reinholz & Abrahamson, 2011; Ottmar & Landy, 2017; 

Marghetis, Núñez & Bergen, 2014), or shape identification (Smith et al., 2014), with relatively 

little attention paid to more advanced areas topics such as proof practices (Nathan, 2014; though 

see Marghetis, Edwards & Núñez, 2014). Yet proof is fundamental to the discourse practices of 

mathematicians, serving as the primary method by which mathematicians test claims, construct 

knowledge, and disseminate their research (Lakatos, 2015). This is why justification and proof are

key topics in mathematics education (National Council of Teachers of Mathematics, 2000; 

Stylianides, 2007; Yackel & Hanna, 2003).

Furthermore, much of the work on embodied mathematics emphasizes early mathematical 

development among young children (e.g., Butterworth, 1999). As children mature into more 

abstract and generalized thinkers, there is a need to understand whether and how embodiment 

plays a significant role in their reasoning and learning. Consequently, there is value in extending 

research on embodiment to the topic of geometry proofs, a pre-college strand of mathematics 
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education (Pelavin & Kane, 1990) that focuses directly on articulating logically supported 

generalized truths about space and shape. 

The central objective of this paper is to investigate people’s geometric reasoning and 

informal proof practices within a GEC framework. We specifically examine the roles that 

participants’ gestures and concurrent speech play in predicting the quality of their geometric 

reasoning. The main objective is to identify theoretically motivated associations between body-

based processes and geometric thinking for improving our empirical understanding of the 

embodied nature mathematical reasoning. This investigation is important for understanding the 

scope and predictive power of theories of GEC. Theoretically motivated advancements in our 

knowledge of the nature of embodied mathematical reasoning are important for developing 

effective, evidence-based approaches to education that can inform the design of students’ learning

environments and teacher professional learning experiences. 

Theoretical Framework

Grounded and Embodied Cognition

Although there is a diversity of theories of GEC, they generally share certain tenets. One 

is cognition and computation are not the exclusive result of operations performed with amodal 

symbols; rather, reasoning and computation are necessarily carried out by recruiting perceptual 

and motor processes; and offline cognition – processes, such as planning, that are performed when

one cannot directly access task-relevant inputs and outputs – is achieved via simulation of 

perceptuo-motor experiences, situated actions, and bodily states, which play a causal or 

constitutive role in intellectual processes (Barsalou, 2008; Shapiro, 2010; Wilson, 2002). 
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A second tenet is based on evidence that suggests some aspects of mathematical cognition 

are grounded and embodied (Nathan, 2014). Numbers, for example, are understood within a 

spatial frame that applies cross-culturally (Fischer, 2012). Algebraic symbol manipulation, despite

its apparent abstract nature, is sensitive to spatial grouping (Landy & Goldstone, 2007). Gestures

—spontaneous arm and hand movements that speakers produce when communicating—depict 

learners’ mental simulations and conceptual metaphors of mathematical objects and operations 

(Alibali & Nathan, 2012). Typically, gesture taxonomies identify four main categories (McNeill, 

1992): (a) deictic or indexical gestures, such as pointing, index an object and can provide 

information about its location; (b) iconic gestures convey semantic content through visual 

similarity using hand shape or motion; (c) metaphoric gestures convey semantic content via 

metaphorical mapping; and (d) beat gestures, simple, rhythmic motions that do not clearly express

semantic content but generally align with speech prosody. Gesture studies scholars—especially 

those studying mathematical cognition—often combine iconic and metaphoric gestures into a 

broader category of representational gestures, to emphasize that these each depict meaning 

(Alibali, Heath, & Myers, 2001; Kita, 2000). Representational gestures produced during proof 

construction suggest that experts' mathematical reasoning is inherently embodied, not merely an 

aid to communicate mathematical ideas (Marghetis et al., 2014). Scholars suggest “that gesture 

and other bodily movement is essential … in the intellectual construction of mathematics;” and 

along with words, symbols, diagrams, and objects, “the mathematician's body may be a 

constitutive part of his or her situated proving” (Marghetis & Núñez, 2013, p. 229).

Gesture as Action and Simulated Action

Research shows that gesture production reliably predicts some forms of mathematical 

thinking, and that engaging students in gesture production can enhance learning. For example, 
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primary grade children learning about mathematical equivalence produce gestures that indicate 

they have learned to the attend to spatial properties that distinguish the two sides of the equation 

delineated by the equal sign, even before they can verbally articulate that distinction (Alibali & 

Goldin-Meadow, 1993). In addition to their communicative function, gestures perform simulated 

actions. There is substantial empirical support for the Gesture as Simulated Action (GSA) 

framework (Hostetter & Alibali, 2008, 2019). As evidence, speakers gesture more often when 

their speech is based on imagery, and the form of a gesture parallels the form of the underlying 

mental simulation, especially when describing imagery to mentally transform or manipulate 

objects (Hostetter, Alibali, & Bartholomew, 2011). Experts gesture less frequently than novices in

some studies (Chu & Kita, 2011), presumably because experts have had more practice performing

and verbalizing the tasks (e. g., Provost, Johnson, Karayanidis, Brown, & Heathcote, 2013). As 

simulated actions, gestures can act on entities, as though physically rotating an imagined triangle. 

Furthermore, because these actions on imagined objects are not bound to physical constraints, 

simulated actions can transform an entity, such as growing and shrinking the triangle. In this vein,

scholars have identified a specific class of representational gestures, called dynamic depictive 

gestures, that portray transformations on imagined objects (Garcia & Infante, 2012; Newcombe &

Shipley, 2013), enabling simulated actions to support students’ imagination and enact 

mathematical generalizations.

Dynamic Gestures Explore Generalized Properties

Dynamic gestures specifically enact spatio-temporal transformations of imagined entities 

that allow people to physically experience the operations, generalization, and chain of logical 

inference that support production of valid analytical proof schemes (Harel & Sowder, 2005; Pier 

et al., 2019). Non-dynamic (or static) gestures primarily identify properties of objects (e.g., shape,
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location), while dynamic gestures perform operative actions that allow agents to explore the range

of an object’s properties (e.g., how it rotates or skews; Chu & Kita, 2011; Garcia & Infante, 2012;

Hegarty, Mayer, Kriz, & Kechner, 2005; Newcombe & Shipley, 2012). Figure 1 visually 

compares these properties of dynamic and non-dynamic depictive gestures during student 

interviews while reasoning about the truth of the midsegment conjecture, The segment that joins 

the midpoints of two sides of any triangle is parallel to the third side. Non-dynamic and dynamic 

gestures activate different cognitive processes. In Figure 1a, the participant uses a dynamic 

gesture to continually adjusts the angle of one side (right arm) as it meets a second side (left hand)

as she realizes in mid-sentence that her initial evaluation that the conjecture was false was 

inaccurate, and that, in fact, the midsegment will always remain parallel to the third side (here, the

base), In Figure 1b, another participant uses a non-dynamic gesture to form two sides of the 

triangle that meet at a vertex and makes no further adjustments to the shape.

People with lower spatial reasoning skills produced a higher proportion of static gestures 

and thus conveyed less dynamic information about object manipulation than those with higher 

spatial reasoning skills (Göksun, Goldin-Meadow, Newcombe, & Shipley, 2013). In another 

study, participants who produced dynamic gestures were more likely to generate correct insights 

and showed higher rates of valid proofs for mathematical conjectures (Pier et al., 2019). These 

findings suggest dynamic gestures may be associated with cognitive processes that are especially 

helpful for mathematical generalizations and proofs. 

Action-cognition transduction proposes that the advantages for mathematical reasoning 

incurred by dynamic gesture production come about because the actions performed on either real 

or imagined entities engage the sensorimotor system to recreate those cognitive states that 

simulate the important properties, relationships, and behaviors of the object (Nathan & 
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Walkington, 2017). The motor programs generated to process and control those movements 

necessarily anticipate the outcomes of those potential actions, producing predictive expectations 

that naturally support inferences about those future states. This feedforward architecture offers an 

account of an action-based inferential mechanism that considers all such plausible future states of 

an object (Nathan, 2017; Nathan & Martinez, 2015; Wolpert, Doya & Kawato, 2003) and forms 

the basis for embodied reasoning about generalized spatial properties (Nathan & Walkington, 

2017). A body-based account of inference making is much-needed since people otherwise 

struggle to formulate the generalizations that foster mathematically valid proofs. 

Geometric Reasoning Using Dynamic Gesture Production and Transformational Speech

Geometric proof is a valuable area for improving education and extending research on 

mathematical cognition. Geometric proofs typically address universal statements about space and 

shape, which are an important area for the study of generalized and abstract thought (Lehrer & 

Chazan (1998/2012). Proof in this domain does not readily lend itself to “canned” procedures or 

mathematical algorithms, such as long division, that might enable people to generate a valid 

answer with little understanding of the math involved (Koedinger, 1998). Thus, the study of proof

is especially intriguing for GEC because of its central role of conceptual understanding of 

generalizations and abstractions. 

Despite proofs’ centrality to mathematical practice and educational objectives, students 

struggle to construct viable and convincing mathematical arguments and provide valid 

generalizations of mathematical ideas (Dreyfus, 1999; Martin, McCrone, Bower, & Dindyal, 

2005). Students often overgeneralize what they can conclude from specific examples (e.g., Healy 

& Hoyles, 2000; Knuth, Choppin, & Bieda, 2009). Even when presented with valid deductive 

proofs, students may find them unconvincing (Chazan, 1993), and they fail to appreciate the 
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utility of deductive reasoning for communicating generalized arguments based on logical 

inference (Harel & Sowder, 1998). High school textbooks, largely operating from a frame of 

philosophical rationalism, typically emphasize the role of proofs for establishing certainty (e.g., 

de Villiers, 1998/2012) rather than as a means for developing mathematical intuition and sense of 

inquiry and wonder (Gravemeijer, 1998/2012, Lehrer et al., 1998/2012; Lockhart, 2009) that 

draws on students’ spatial skills (Goldenberg, Cuoco, & Mark, 1998/2012). Proof used in this 

way has served to disconnect students’ proof practices from the construction of mathematical 

knowledge (Herbst, 2002). 

Expanded Notions of Proof. Scholars looking beyond proof as a product have explored 

proving as a form of disciplinary discourse (e.g., Balacheff, 1991; Knuth, 2002). Harel and 

Sowder (1998), arguing for a broader view than traditional high school textbooks, define proving 

as “the process employed by an individual to remove or create doubts about the truth of an 

observation” (p. 241). Harel and Sowder (2005) propose a taxonomy of proof schemes that strives

to capture this broader conception. Transformational proofs, in particular, make use of mental or 

physical operations to demonstrate the validity of conjectures (Clements & Battista, 1992). 

Transformational proofs, part of the deductive analytic proof scheme (Harel & Sowder, 2005), 

have three defining characteristics: They are general, showing the argument is true for all 

members of an object class; they use operational thought, where the prover progresses 

systematically through a goal structure, anticipating the outcomes of proposed transformations; 

and they exhibit a chain of logical inference, with conclusions following from valid premises. 

Embodied Perspectives on Geometry Reasoning. Several investigations have examined 

geometric reasoning from an embodied lens to explore fruitful avenues for improving our 

understanding of mathematical cognition. Studies of mathematicians’ gestures suggest that 
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experts’ proof practices are “fundamentally … embodied” (Marghetis et al., 2014, p. 228). 

Primary and secondary grade students’ understanding of angles improves when manipulating their

body position and movement (Petrick & Martin, 2012; Shoval, 2011; Smith, King, & Hoyte, 

2014). Use of global-positioning system devices and mapping software enabled students to figure 

out where to stand and walk in order to make the geometric constructions for a marching band, 

that enriched subsequent geometric reasoning with pencil-and-paper formats (Ma & Hall, 2018). 

Pier and colleagues (2019) found that students’ transformational speech and dynamic 

gesture independently contributed to students’ proof performance. Like physical and simulated 

transformations, transformational speech was defined as verbal descriptions of goal-directed 

manipulations of mathematical objects through conditional statements (“if... then...”) and 

inferences. 

Theoretically motivated hypotheses

There is a need to investigate the psychological mechanisms that underlie embodied proof 

performance. The literature points toward some productive avenues but lacks some of the rigor 

and clarity that can reliably test hypotheses about the stated promise of embodied mathematical 

thinking. Findings of many of these studies are summarized in the model of Figure 2. As 

reviewed, studies implicate embodied processes exhibited by representational gestures – and 

specifically dynamic gestures – as observable manifestations of simulated actions that mediate 

valid mathematical proof production (e.g., Nathan & Walkington, 2017; Pier et al., 2019; 

Walkington et al., 2014; Williams-Pierce et al., 2017). As shown in Figure 2, spatiotemporal 

processes (top pathway) on their own can yield mathematical intuitions about the truth status of a 

conjecture, but do not support the production of a valid verbal justification of that judgment 

without verbal processes. Studies also point to the important role of language processes – 
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especially action-based transformational speech – for supporting logical and causal inference 

(Knuth et al., 2002; Pier et al., 2019). Language processes can generate proofs (bottom pathway), 

but may be generated without an intuitive understanding of why or how they are true. In order to 

produce a mathematically valid proof-with-intuition, both spatiotemporal and language processes 

must be engaged and, further, must activate key mediators in language (transformational speech) 

and action (representational gestures) in order to assure that the proof that is generated meets the 

three criteria for a valid mathematical proof that is logical, operational and generalizable. The 

research also suggests that these influences are moderated by one’s mathematical expertise 

(Goldin-Meadow, 2010), suggesting that even though experts’ proofs may be mediated by body-

based processes, experts may be less dependent on gesture production to access implicit 

knowledge and convey that knowledge as they formulate mathematically valid proofs. The 

present study investigates these issues by examining the role of transformational speech and 

representational gestures across a common set of multiple mathematical conjectures.  

We frame this investigation in terms of a central research question: Is geometric reasoning

associated with participants’ simulated actions? As one looks across the research literature, proof

performance is often reported in a variety of ways without a standard outcome measure. 

Consequently, there is value in stipulating precise measures with which proof performance is 

assessed. The present study uses three outcome measures, listed in increasingly more complex 

levels of reasoning: Intuition, insight, and mathematically valid proof. We are especially 

interested in the production of representational gestures and transformational speech as 

instantiation of simulated actions. We hypothesize that gestures and transformational speech acts 

each make unique contributions to models of participants’ mathematical reasoning. 
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Our measure of intuition makes the fewest assumptions, and simply requires that, upon 

their initial encounter with a conjecture participants accurately state if the statement is true or 

false. Intuitions, we posit, are non-verbal “snap judgments” about the veracity of a mathematical 

conjecture, and thus primarily mediated by embodied processes. Since correct intuitions do not 

depend on a person’s ability to articulate a generalizable property of shapes, we expect that 

representational gestures will be the strongest predictors, rather than the more restrictive category 

of dynamic depictive gestures. We also expect that linguistic factors are not likely to be reliable 

predictors of intuition performance. We summarize this in the following hypothesis:

H1. Intuitions about the veracity of a geometry conjecture are reliably associated with 

one’s representational gestures

Insight provides a measure of participants’ grasp of the “essential meaning,” or gist, about 

the mathematical ideas that come into play while forming a proof, “irrespective of exact words, 

numbers, or pictures.” (cf. Reyna, 2012, p. 333). We expect insight performance to be associated 

with one’s speech and one’s generation of representational gestures. The second hypothesis states:

H2. Insights about the veracity of a geometry conjecture are reliably associated with one’s 

representational gestures and one’s transformational speech. 

To be considered a mathematically valid proof, as noted, one’s argument must include 

three characteristics (Harel & Sowder, 1998, 2005; Pier et al., 2019): generality, operational 

thought, and logical inference. We expect to see valid proof performance associated with dynamic

depictive gesture production as an instantiation of the simulated actions needed to support 

operational thinking and generalization. We also expect valid proofs to be associated with the 

production of transformational speech acts as explanatory records of a logical chain of inference.
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H3. Valid proof performance will be reliably associated with one’s dynamic gestures and 

transformational speech. 

A second research question poses, Does the strength of the hypothesized relationships 

between geometric reasoning and simulated action depend on participants’ mathematics 

expertise? Those with greater expertise in math will have greater knowledge of planar geometry 

and more familiarity with proof practices (Inglis & Alcock, 2012; Koedinger & Anderson, 1990). 

Yet there are conflicting accounts about the nature of embodied behaviors for experts. On one 

hand, researchers have noted that the mathematical reasoning and proof practices exhibited by 

experts are inherently embodied (Marghetis & Núñez, 2013), suggesting that gesture production 

should be high for experts, perhaps even higher than for non-experts (Marghetis, Edwards & 

Núñez, 2014). Others (Chu & Kita, 2011) have found that experts in some tasks (e.g., spatial 

visualization) gesture less frequently than novices, possibly because of the greater refinement of 

their skilled performance (e.g., Provost et al., 2013). Thus, we have two competing hypotheses 

regarding the observable simulated actions for experts in mathematics.

H4.a. Valid proof performance by experts will be more strongly associated with gesture 

production than non-experts. 

H4.b. Valid proof performance by experts will be less strongly associated with gesture 

production than non-experts. 

The following research method is used to explore these hypotheses.  
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Methods

Participants

Ninety adult students were recruited from a large university in the Midwestern United 

States. Participants included 85 undergraduate students and 5 graduate students. Graduate 

students were included in the recruitment of expert participants when recruitment efforts limited 

to undergraduate students became unlikely to yield at least 42 expert participants as indicated by 

the power analysis. All participants were English-speaking students, but for some English was not

their first language. As compensation, each participant received a $25 gift card to an online 

retailer. Some participants also received partial course credit (extra credit) if their course 

instructors offered this credit option. Experts (n = 46) were math majors with advanced course 

work beyond linear algebra that included studies of formal proofs. All graduate students were 

included in the expert group. In this group, there were 31 males and 15 females with 52.2% of 

students identifying as native English speakers. Non-experts were undergraduate non-STEM 

education majors (n = 44). This group included 6 males and 38 females with 97.7% of students 

identifying as native English speakers. Further descriptive statistics for both expert and non-

expert groups can be found in Table 1. 

Power Analysis

Our a priori power analysis used β = 0.80, α = 0.05, and an effect size of f = 0.41 for the 

effect of expert/novice on proof performance (based on data from Nathan & Walkington, 2017). 

The analysis used G*Power’s (Faul, Erdfelder, Buchner, & Lang, 2009) ANOVA Repeated 

Measures, with correlations among a participant solving repeated geometry proofs estimated at 

0.6 based on previous data (Nathan et al., 2014; Nathan & Walkington, 2017). G*Power returned 
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a minimum sample of 26 per group. However, we additionally took into account having power to 

detect small/medium partial mediation effects (d = 0.26-0.39; Fritz & MacKinnon, 2007), which 

led to a desired sample size of 42 per group (84 total) when accounting for the design effect. 

Materials 

Conjectures. The four conjectures used in this study were selected from a variety of secondary 

mathematics textbooks and chosen so that each explored general properties of two-dimensional 

(planar) objects. Three conjectures involved properties of triangles, and one conjecture concerned 

properties of parallelograms. Additionally, three conjectures were true statements, and one 

conjecture about triangles was a false statement. Table 2 shows the text for each conjecture, its 

truth, relevant mathematical insights regarding the conjecture, and example proofs. 

One of the conjectures also identified a technical term in the conjecture printed in blue 

font with an underline that linked to a glossary explaining the term’s meaning. Participants were 

informed about the glossary term prior to the interviews. Participants were invited but not 

required to click the link on the conjecture slide. Judgments were made by researchers on the 

team with math instruction experience as well as experience with the target population of 

participants as to which terms would be appropriate to include or not.  These decisions were made

within the broader goal of presenting our expert and novice participants with conjectures that 

would be appropriately difficult to require active reasoning and participation, and appropriately 

scaffolded to give all participants a chance to attempt a response without first giving up. 

Dependent, Independent and Control Variables. The dependent variables (DVs) in this study 

are intuition, insight and proof performance. The independent variables (IVs) in this study are 

expertise, gesture production, transformational speech production. The remaining measures are 

control variables: spatial ability, verbal phonemic fluency, general geometry knowledge, and 
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several demographic measures (self-report of math course experience, such as the last math class 

completed, current math class enrollment, math course history with final grades, age, sex, native 

language, and race/ethnicity). Measures for these are explained below.  

Spatial Ability.  Spatial ability was assessed using the Paper Folding Task (Ekstrom, French, 

Harman & Derman, 1976). This spatial measure is included because it has been to shown in prior 

studies to have been predictive of gesture production (Hostetter & Alibali, 2007) as well as 

predictive of performance on measures of geometry intuition, insight, and proof (Walkington, 

Woods, Nathan, Chelule & Wang, 2019b). The Paper Folding Task is a 20 item (2 x 10 items per 

section), multiple choice assessment. Participants were given 3 minutes to complete each section 

of ten questions. Scores were computed by giving one point for each correct answer and 

subtracting 0.25 for each incorrect answer. For the Paper Folding Task, only the first section was 

used for calculating spatial ability scores. The historical reliability for the Paper Folding Task 

ranges from 0.75 to 0.89 (Kane et al., 2004; Kozhevnikov & Hegarty, 2001; Miyake, Friedman, 

Rettinger, Shah & Hegarty, 2001), and for our sample, the reliability for the first section was 0.79.

Verbal Phonemic Fluency. Verbal phonemic fluency was assessed using a standard task where 

participants to name as many words as they could think of in 60 seconds that begin with the letter 

“s” (desRosiers & Kavanagh, 1987). This verbal phonemic fluency measure is included because it

has been to shown to have been predictive of gesture production in prior work (Hostetter & 

Alibali, 2007). Responses were given aloud and recorded through the video/audio recording 

software. This task was scored by counting the number of unique words uttered within the 60 

second time limit. Counts of unique words excluded proper nouns and words whose variations 

differed only in plurality or verb tense. For example, if a person uttered “save,” then the words 
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“saving”, “savings”, and “saved” would not further be counted. The retest reliability for this 

measure has been assessed 0.88 (desRosiers & Kavanagh, 1987).

General Geometry Knowledge. Knowledge about geometry properties was assessed with 12 

items clustered into three multiple-choice questions, developed in a prior study (Nathan & 

Walkington, 2017; r=0.56 with performance on conjectures similar to those considered here). 

Items asked about the properties of triangles, parallelograms, and circles. Participants needed to 

identify correct answers in the multiple-choice questions given, and participants could select more

than one response. Each question had four answer choices, and each answer choice was scored as 

correct or incorrect for one point each. Scores were summed across all three clusters for a final 

score out of 12.  The geometry knowledge test was ultimately not used in the models because of 

issues with internal consistency (α = 0.54). Results for proof, insight, and intuition were the same 

with or without this test included.

Demographic Information. This survey included a self-report of math course experience, such 

as the last math class completed, current math class enrollment, and math course history with final

grades.  Additional demographic information was collected about age, sex, native language, and 

race/ethnicity. After data collection was complete, we collapsed the race/ethnicity responses into 

three categories for the analyses: White, Asian, and Other. This decision was made due to the 

high number of participants who self-identified as White (65.56%) and Asian (27.78%). The 

“Other” category represents the remaining options (6.66%). Due to differences in the expert and 

non-expert groups, several of these variables were included in the final prediction models as 

control variables. 
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Equipment

The experiment was run in a room operating a projecting computer, an interactive white board, 

and two web cams that linked to a second computer. The interactive functionality allowed the 

researcher to advance PowerPoint slides, which contained the conjecture text or navigate through 

additional material (i.e., the glossary) by tapping on the white board rather than returning to the 

computer each time. The webcams were mounted about 6 feet high on the wall adjacent and to the

left of the interactive white board. When running the experiment, the researcher would stand right

below the left camera, out of the frame of the shot.  This made it so the participant was more 

likely to be directing their response towards the camera. Figure 1 depicts the room set up. 

Coding

Videos of the experimental sessions were organized and transcribed verbatim using the 

Transana software system (Woods & Fassnacht, 2012), which links transcript locations to video 

locations through time codes and supports qualitative coding and SQL Boolean search functions. 

Time stamps were added to split the full transcripts into the four conjectures for coding; this 

resulted in 360 video clips to be coded (90 participants x 4 conjectures). Two members of the 

research team coded each transcript using the coding scheme described below and illustrated in 

Figure 3. 

Coding Scheme. The transcripts were coded for six categories: conjecture comprehension, 

intuition, insight, gesture, correct true/false judgment, and mathematical validity of the proof 

(Figure 3). 

1)  Comprehension. Participants were coded as not comprehending the conjecture if they 

stated they did not understand or provided explicit evidence that they were describing objects or 

operations not related to the conjecture. If a transcript was coded as “did not understand,” the 
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researcher did not continue coding the transcript for that conjecture. This criterion led us to 

exclude 17 out of 360 transcripts (4 expert, and 13 non-expert) from further coding. 

2) Intuition. Intuition was measured by the accuracy of their immediate true/false 

evaluation of each conjecture (Zander, Öllinger & Volz, 2016; Zhang, Lei & Li, 2016). If the 

participant correctly answered true/false or had an immediate shift to the correct true/false 

judgment, it was coded as 1. All other responses were coded as 0. 

3) Insight. Insight was coded for the presence of key mathematical ideas for each 

conjecture, as specified by our team of mathematicians and math educators (Table 2). If the 

participant demonstrated initial correct mathematical insight for the conjecture, it was coded as 1. 

All other responses, including instances where participants switched from incorrect insights to 

correct insights, were coded as 0.

4) Gesture. In this study, gestures produced during the interviews were coded as 

representational or not, if they represented or depicted some feature or operation of a 

mathematical object or idea. Representational gesture codes effectively combine the traditional 

category of iconic gestures, which depict visual similarity, with the category of metaphorical 

gestures, which use iconic depictions for abstract referents, such as metaphorically expressing 

numbers of greater value as “large.” Representational gestures were further subdivided with one 

of two mutually exclusive codes, either non-dynamic depictive (representational) gestures or 

dynamic depictive (representational) gestures. Our category of non-dynamic depictive gestures 

(Figure 1b) is exclusive of any dynamic depictive gestures. As an example, tracing the outline of a

mathematical object, such as a triangle, would be coded as representational (depicting parts of the 

triangle) but as non-dynamic, because no transformation was performed on the triangle, such as 

dilation or skewing. Dynamic depictive gestures, the second category, are representational 
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gestures that depict motion-based transformations of a mathematical entity to test out the 

generalizability of a conjecture (Figure 1a). The occurrence of at least one dynamic depictive 

gesture was coded as 1 in addition to the code for representational gesture. Participant transcripts 

that did not include any gesture or made gestures that not depictive, were given a 0. 

5) Correct True/False Judgment.  This code was used to describe whether the participant 

correctly identified the conjecture as always true or always false by the end of their reasoning. 

6) Mathematical Validity of the Proof. For the purpose of this study, proof validity was 

coded for a verbalized proof (including speech and gesture) that correctly identifies the conjecture

as always true or always false and, in addition, contains evidence of all three criteria stipulated by 

Harel & Sowder (2005): a logical chain of reasoning, such that conclusions are drawn from valid 

premises; generalizable arguments, showing the argument is true for a class of mathematical 

objects; and evidence of operational thinking, so that the transcript exhibited evidence of 

progression through a goal structure, anticipating the outcomes of operations. 

Inter-rater Reliability. To establish inter-rater reliability, a researcher who was not involved in 

the original coding process or the development of the coding scheme coded a random selection of 

10% of the participants’ videos . Overall inter-rater reliability for these codes is κ  = .911.  

Individual inter-rater reliability measures for comprehension, intuition, insight, proof process, 

gesture, and correctness are shown in Table 3. 

To assess the validity of the inter-rater reliability given the small sample size, we 

calculated Shaffer’s rho for each code (Eagan et al., 2017; https://app.calcrho.org/). For this 

analysis, we used a kappa threshold of 0.65. Results for each inter-rater reliability measure can be

found in Table 3. Overall, all Shaffer’s rho statistics were less than 0.05 which indicates that our 

sample size was sufficient to estimate the inter-rater reliability at a threshold of at least 0.65. 
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Coh-Metrix Coding. To further code the content of each participant’s verbal reasoning, we used 

metrics from Coh-Metrix, a validated text data-mining tool that produces measures of several 

linguistic indices, including situation model cohesion, connectives, lexical diversity, and syntactic

complexity (McNamara, Graesser, McCarthy, & Cai, 2014; www.cohmetrix.com). Three 

variables were of particular interest: verbs, first-person pronouns, and a measure of intentional 

cohesion. Verb use is reported as the incidence score of verbs per 1000 words. Similarly, first-

person pronoun use is reported as the incidence score of first-person pronouns per 1000 words. 

The intentional participle to intentional verb use is a ratio score, a relative measure that compares 

the incidence of intentional participles per 1000 words to the incidence of intentional verbs per 

1000 words, that describes the situation model and internal cohesion created by the participants 

during the conjecture proof.  An earlier, backwards stepwise regression analysis of transcripts 

identified these three variables from among a set of 21 as significant contributors to students’ 

verbal proofs (Schenck et al., 2020).  To prepare each transcript for the Coh-Metrix automated 

analysis, we removed non-verbal cues, inaudible speech, transcript notation (parentheses, 

timestamps, participant numbers, etc.), and researcher speech. 

Procedures 

A researcher escorted the participant to the experiment room and turned on the video 

recording software. Participants began their session by completing the Paper Folding Task. 

Instructions were read out loud by the researcher as participants followed along in the written 

instructions. Participants sat at a table and provided answers to the items on the worksheet until 

all items were completed or the 3 minutes were up. Participants were then instructed to stand on 

the opposite side of the table facing the video camera and the experimenter. Participants were 

introduced to verbal phonemic fluency task. Responses were given aloud and videotaped.  
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While participants remained standing where they were, the researcher introduced the 

conjecture task. Specifically, participants were instructed to read the math conjecture presented on

the interactive white board, then report whether the conjecture was true or false, and finally 

provide an explanation why the conjecture is true or false (or why they believed the conjecture to 

be true or false). All participants completed a set of 12 conjectures total. The first four conjectures

were designed to be common among all participants (Table 2), whereas the remaining eight 

conjectures were tailored to suit participants’ expertise levels and thus not held constant between 

participants. Thus, only the common four conjectures are used for this analysis. The order of these

four conjectures was counterbalanced across participants by using a Latin square to create four 

conjecture orders. Using Power Point software, conjectures were projected in a black sans-serif 

font with a white background on a large interactive screen.  Participants stood about 3 feet away 

from the center of the screen. Researchers administrating the task tapped the screen to advance the

slide to the next conjecture after a full response was recorded.  

Researchers were given a script for their interactions with participants. They were 

instructed to prompt participants to give a full response, and then afterwards to invite participants 

to reiterate their explanation. The goal of this final prompt was to give participants an additional 

chance to summarize their thoughts into a fully formed answer. However, due to experimenter 

error, not all participants were uniformly given this chance to reiterate their explanation. Thus, for

our Coh-Metrix analyses we only analyzed the initial response from each participant. To test 

whether there were systematic differences between those prompted only once and those prompted

to reiterate their answers, we conducted post-hoc Welch two sample t-tests to see if the mean 

values of the three Coh-Metrix variables significantly differed between participants’ initial (i.e., 

single) or final (either single or double) reports.
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Though prompting participants to reiterate did often result in lengthier final transcripts, 

there was not a statistically significant difference in the mean scores between the initial (single) or

final (either single or double) reports in participants’ intentional situational model cohesion 

(initial reports, M = 4.32, SD = 1.01; final reports, M = 8.97, SD = 0.99), t(37) = -1.44, p = .159; 

verb use (initial reports, M = 1.03, SD = 1.01; final reports, M = 1.41, SD = 1.00), t(235) = -

1.899, p = .059; or  first-person pronoun use (initial reports, M = 1.46, SD = 1.09; final reports, M

= 2.00, SD = 0.968), t(190) = -0.653, p= .514. Since there were no reliable differences in the Coh-

Metrix parameters, we included all 360 observations in subsequent analyses. (NB. We conducted 

t-tests on the outcomes variables (intuition, insight, and transformational proof) and the gesture 

variables (non-dynamic and dynamic gestures). None of these comparisons showed significant 

differences.)

After giving videotaped responses to the four conjectures, participants completed surveys 

of their General Geometry Knowledge and demographic information. Finally, participants 

received their compensation and were given a copy of their consent form along with a summary 

of the experiment’s goals. The summary also explicitly stated not to share the details about the 

experiment with any friends who are potentially enrolled to participate in the future.

Results

Descriptive statistics illuminated demographic and performance differences between the 

expert and non-expert groups in our study (Table 1). For example, there were significant 

differences in ethnicity, with fewer whites in the expert group than in the non-expert group (

χ2 (2)=¿ 84.765, p < .001), and with experts including a smaller percentage of native English 

speakers (χ2 (1)=¿ 95.739, p < .001). Experts were more likely to produce the correct 
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transformational proof (χ2 (1)=¿ 39.752, p < .001), insight (χ2 (1)=¿ 56.503, p < .001), and 

intuition (χ2 (1)=¿ 16.722, p < .001) than non-experts. There were also significant differences 

between expert and non-expert groups in spatial ability (t(322) = -15.76, p < .001) and prior 

geometry knowledge (t(322) = -15.50, p < .001), with experts scoring higher than non-experts on 

these two measures. There was not a significant different between expert and non-expert groups 

in verbal fluency (t(322) = -1.63, p = .104).   

Correlations among all of the key factors are presented in Table 4. We used logistic 

regression for binary outcomes (0/1) on accuracy of proof, insight, intuition, non-dynamic 

gesture, and dynamic gesture. We used a Firth logistic regression for accuracy of transformation 

proof as this outcome had low prevalence in our data. This type of model uses a penalized 

likelihood method rather than the maximum likelihood method used in standard logistic 

regression (Firth, 1993; Heinze & Schemper, 2002). The models for transformational proof were 

fit using the logistf command in the R software package logistf (Heinze, Polner, Dunkler & 

Sourthworth, 2018). Linear mixed models  for intuition, insight, non-dynamic gesture, and 

dynamic gesture were fit using the glmer command in the R software package lme4 (Bates, 

Maechler, Bolker & Walker, 2015). We included participant ID and conjecture as random effects 

in these models. We determined best fit model selection using the anova() function to make 

comparisons between models to test for significant reductions in deviance using a chi-square 

distribution. Predictors were kept in the model only if they significantly improved the fit of the 

model by reducing the deviance. Dropped predictors included age, native English speaker status, 

and all interaction terms. Finally, we interpreted odd ratios are “small” (Odds ratio = 1.68 or 0.60 

if reversed), “medium” (Odds ratio = 3.47 or 0.29 if reversed), and “large” (Odd ratio > 6.71 or < 

0.15 if reversed). These interpretations correspond to Cohen’s d=0.2, 0.5, and 0.8 as “small”, 
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“medium”, and large” (Chen, Cohen & Chen, 2010). Odds ratios, rather than effect sizes, are 

reported here as our dependent variables are dichotomous.  

Intuition

The results of Model 1 (Table 5) showed that expertise (p = .003) and ethnicity-Asian (p = .049) 

were both significantly associated with correct intuition. Expertise was associated with an 

increase in the relative odds of producing correct intuition of 3.05, while ethnicity-Asian was 

associated with an increase in the relative odds of 2.76. 

When factors coding for non-dynamic and dynamic representational gestures were added 

to form Model 2, non-dynamic representational gesture was significant (p = .004), as was 

ethnicity-Asian (OR = 3.05,p = .042) and expertise (OR = 2.28, p = .030). The occurrence of at 

least one non-dynamic representational gesture was associated with an increase in the relative 

odds of producing correct intuition of 2.30. These results provide support for the hypothesis that 

non-dynamic representational gestures reliably predict intuitions about the veracity of a geometry 

conjecture (H1). 

Insight

The results for the initial fixed effects model for insight (Model 1, Table 6) showed that expertise 

was significantly associated with the production of correct mathematical insights (p < .001). 

Expertise was associated with an increase in the relative odds of producing correct mathematical 

insight of 9.15. 

After non-dynamic and dynamic gestures were included in Model 2, non-dynamic gesture 

was significantly associated with correct insight, with non-dynamic gesture associated with an 

increase in the relative odds by 2.21 (p = .019). Expertise remained significant in the models, with
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expertise associated with an increase in the relative odds of correct mathematical insights of 6.47 

(p < .001).

Model 3 (Table 6) added the three transformational speech variables (situation model-

intentional cohesion, verbs, and first-person pronouns) to Model 2. Results showed that while 

expertise continued to be significantly associated with correct insight (OR = 5.69, p = .001), non-

dynamic gesture (p = 0.059) was replaced by dynamic gesture (OR = 2.11, p = 0.042). 

Additionally, results showed a positive association between a more cohesive situation model and 

correct mathematical insight (OR = 1.50, p = 0.040).  Combined, these results support the 

hypothesis that correct mathematical insights about the truth of a geometry conjecture are reliably 

associated with representational gestures and transformational speech (H2). However, the results 

also provide evidence that dynamic gestures—a more specialized form of representational gesture

—are also associated with correct insights. 

Proof Performance

The initial fixed effect model for transformational proof (Model 1, Table 7) showed that 

expertise (p = .001) and spatial ability score (p < .001) were significantly associated with correct 

transformational proof. Expertise was associated with an increase in the relative odds of 

producing correct transformational proofs of 3.60, while spatial scores were associated with an 

increase in the relative odds of 1.32. 

When gestures were added to form Model 2 (Table 7), dynamic gestures became 

significantly associated with transformational proof (p < .001), while both expertise and spatial 

ability lost significance (p = .372 and p = .112, respectively). The production of at least one 

dynamic gesture was associated with an increase in the relative odds of producing correct 

transformational proofs of 12.94, exceeding the threshold for a large odds ratio. 
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When the three transformational speech variables (situation model-intentional cohesion, 

verbs, and first-person pronouns) were added to form Model 3 (Table 7), greater situation model 

cohesion (OR = 1.54, p = .007) and the reduction of first-person pronouns (OR = 0.51, p = .002) 

were significantly associated with transformational proof. More frequent situation model cohesion

was associated with an increase in the relative odds of producing a mathematically valid 

transformational proof. More frequent use of first-person singular pronouns was associated with a

decrease in the relative odds of generating a valid transformational proof. This result can 

otherwise be interpreted as showing that less frequent mentions of first-person singular pronouns

—fewer instances of talking about oneself, and more occasions to talk about other entities, such 

as the mathematical objects under scrutiny—was associated with valid transformational proofs. 

The occurrence of dynamic gesture continued to have the largest, most significant association 

with proof performance. Even when controlling for speech content, expertise, and spatial 

reasoning, the production of at least one dynamic gesture during their verbal proof was associated 

with an increase in the relative odds of producing a correct transformation proof of 210.61 (p 

< .000), showing a large odd ratio. These results give clear evidence that valid proof performance 

is strongly associated with dynamic gestures and transformational speech (H3).

Expertise

To examine the difference in gesture production between experts and non-experts, we conducted 

three Chi-squared tests of independence with Yates’ continuity correction. First, we analyzed 

whether expert status and the production of representational gestures were independent of one 

another. A significant relationship was found (χ2 (1)=¿ 14.75, p < .001), with experts more likely 

to produce representational gestures (36%) than non-experts (17%). Second, we investigated 
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whether expert status and the production of non-dynamic representational gesture were 

independent. Though the proportion of non-dynamic gesture was higher in non-experts (65%) 

than in experts (57%), this difference was not significant (χ2 (1)=¿ 2.34, p = .127). Third, we 

examined the relationship between expertise and dynamic representational gesture production. 

This relationship was significant (χ2 (1)=¿ 27.34, p < .001), with experts more likely to produce 

dynamic gestures (79%) than non-experts (52%). 

In summary, experts perform significantly more representational gestures and, more 

specifically, experts produce more dynamic representational gestures than non-experts. As the 

relative odds of transformational proof increases in relation to the production of at least one 

dynamic gesture (see previous section), these combined results support the hypothesis that 

experts’ gestures, specifically dynamic representational gestures, may be more strongly associated

with valid proof performance than non-experts’ gestures (H4a). 

Gesture

The best fitting model for non-dynamic gesture indicated that expertise (p = .004), sex (p < .001), 

and an increase in verbs (p < .001) and second-person pronouns (p = .035) were significantly 

associated with non-dynamic gesture (Table 8).  Expertise was associated with an increase in the 

relative odds of producing at least one non-dynamic gesture of 1.19. Males were associated with a

decrease in the relative odds of non-dynamic gesture of 0.81. Additionally, an increase of verbs 

and second-person pronouns were associated with an increase in the relative odds of non-dynamic

gesture of 1.10 and 1.05, respectively 

The same model was also found to be the best fitting model for dynamic gesture (Table 9).

Results showed that dynamic gesture was significantly associated with expertise (p = .031), an 
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increase in spatial ability scores (p = .002), an increase in comparative connectives use (p = .031) 

and an increase in second-person pronouns (p < .001) during proof production. Expertise was 

associated with an increase of the relative odds of producing a dynamic gesture of 1.15. Increased 

spatial ability scores were associated with an increase in the relative odds of producing at least 

one dynamic gesture of 1.04. Similarly, an increase in comparative connectives and second-

person pronouns was associated with an increase of the relative odds of dynamic gesture by 1.05 

and 1.10, respectively.  

Discussion

The analysis of one’s gestures during mathematical reasoning tasks offer insights into the 

relationship between body-based processes and cognitive processes that can advance our 

understanding of mathematical cognition and math education. It was with these goals in mind that

we investigated the role of gesture production during geometric reasoning. 

Summary of findings

Our investigation was guided by a primary research question: Is geometric reasoning  

associated with participants’ simulated actions? Secondarily, we wanted to know: Does the 

strength of the relationship between geometric reasoning and simulated action depend on 

participants’ mathematical expertise? We address these two questions in turn with respect to our 

findings. 

Simulated actions offer an alternative to computational accounts of intellectual behavior. 

Performance on mental rotation tasks (Shepard & Metzler, 1971; Shepard & Cooper, 1982) 

illustrate this phenomenon by showing first that response times are strongly correlated with the 

angular displacement, as though during mental rotation participants are continuously turning the 



31
EMBODIED GEOMETRIC REASONING

objects just as one would do it manually; and second, that performing physical rotation interfered 

with mental rotation performance, and even slowed mental rotation when a manual rotation tasks 

was directed to be performed more slowly (Wexler, Kosslyn, & Berthoz, 1998)

As Hostetter and Alibali (2008, p. 497; also see Hostetter & Alibali, 2019) describe,

Thinking about a particular concept, for example, involves a perceptual and motor 

simulation of the properties associated with that concept, even when no exemplar 

of the concept is present in the current perceptual environment (Barsalou, 1999).

Our investigation of the interrelationship of geometric reasoning and simulated action 

centered on evidence of gesture and speech production during geometric reasoning. In support of 

Hypothesis H1, intuition accuracy was reliably associated with representational production.  As 

observed (Tables 6, 7 & 8), participants who performed representational gestures and produced 

transformational speech were more likely to report the correct intuition (H1), verbalize the correct

insight (H2), and produce a mathematically valid proof (H3) than participants who did not 

perform any representational gestures. As predicted, static representational gestures—gestures 

such as making and tracing shapes that could be used to identify non-dynamic properties of the 

objects in question—were associated with higher intuition and insight performance. The 

relationship of representational gestures with performance showed effect sizes in the medium to 

large range. Proof performance was most strongly associated with the production of dynamic 

gestures—those that simulated operations that could be used to explore generalized properties of 

objects—with very large odds ratios (OR = 12.94, without speech; OR = 210.61, with speech in 

the model). These odds ratios were even greater than those for spatial ability and expertise. 
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Indeed, the inclusion of dynamic representational gestures led to variables for both expertise and 

spatial ability dropping out of the model for proof. 

As expected, we also found that transformational speech was reliably associated with 

insight (H2) and proof performance (H3). Recall that transformational speech categories were 

used to tag utterances that captured participants’ point of view and that identified the cohesion of 

one’s situation models regarding the actions performed on mathematical objects, though verb use 

did not significantly contribute to the models of geometric reasoning. Notably, gesture production

was reliably associated with insight and proof, even when controlling for speech content, 

indicating that gestures and speech each make independent contributions to modeling 

performance. That gestures may carry important information about how students think and what 

they know above and beyond what students say has important implications for assessment, which 

we explore further below. Taken together, these findings suggest that geometric reasoning is 

associated with participants’ simulated actions, as exhibited by representational gesture and 

transformational speech. 

We sought to also understand how expertise modulated these observed effects. As 

expected, experts outperformed non-experts in each of the three performance measures, intuition, 

insight and proof. Furthermore, experts were more likely to produce representational gestures 

than non-experts, and, in particular, experts were more likely to produce dynamic representational

gestures. Thus, in our competing hypotheses, we found that geometry performance for experts 

was more strongly associated with gesture production than for non-experts, in support of 

Hypothesis H4a, and in conflict with H4b. These findings, coupled with those showing that 

dynamic gesture production may, to some extent, take the place of expertise, suggests that 
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interventions that elicit mathematically relevant dynamic representational gestures might benefit 

non-experts. We revisit this point later in this section. 

Limitations of the current study

This study has several limitations that are important to take into account when interpreting

the reported findings. First of all, this was a correlational study. Consequently, we must be 

cautious in drawing any causal inferences about these statistical associations. These relationships 

provide valuable empirically based hypotheses for exploring the causal link between gesture 

production and mathematical reasoning. One of the paradigms for this is to inhibit or otherwise 

engage gesture production and examine the effect. This research has shown mixed results, with 

several studies showing significantly degraded performance on reasoning (e.g., Cook, Yip, & 

Goldin-Meadow, 2012; Goldin-Meadow et al., 2001), while others showing no reliable impact 

(Walkington et al., 2019). 

A second limitation is how we conceptualized expertise. In order to have similar levels of 

maturity, we drew from a population of undergraduates enrolled in education courses, and a small

number of graduate student (n=5) to fill out the expert group. While this represents a highly 

selective group of young adults who have gained admission to a competitive public university, it 

is certainly possible to study the views of people fare more experienced in proof practices (e.g., 

Marghetis et al., 2014a). Similarly, it is very likely that there are similar age people for whom 

academic tasks such as geometric reasoning is even less familiar. A broader sampling might well 

reveal even greater group differences that would likely generalize better to the population at large.
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Implications and conclusions

The evidence presented suggests that some facets of mathematical thinking are embodied, 

and that people use body-based processes such as gestures and transformational speech as an 

important aspect of their task performance. Still, the correlational nature of this study cannot 

endorse a causal claim about the role that gestures play in mathematical thinking. The patterns of 

gesture production may be a manifestation of other processes that are themselves revealed 

through these movements and not causally related to or constituents of the reasoning processes 

themselves. This suggests that intervention studies that both prompt and restrict gesture 

production are important. 

Gesture scholars, particularly McNeill (1992), Kendon (2004), and Goldin-Meadow 

(2005) describe systems of gesture identification. This study contributes to gesture studies 

research by expanding the contexts in which people invoke dynamic and non-dynamic gestures, 

and extending the applicability of these forms to geometry, beyond their earlier instantiations in 

calculus (Garcia & Infante, 2012), and mental rotation (Göksun, Goldin-Meadow, Newcombe, & 

Shipley, 2013). For example, when students work collaboratively while engaged in geometry 

proof tasks, dynamic gestures again appear to play a significant role in successful reasoning, even 

when these embodied representations and operations are distributed across the hands and arms of 

multiple students (Walkington, Chelule, Woods, & Nathan, 2019a). A recent review (Williams-

Pierce et al., 2017) noted that an embodied perspective on proof practices in mathematics might 

extend our understanding of mathematical cognition in two important ways. First, the actions 

made by students can influence students’ mathematical reasoning through action-cognition 

transduction, which, by inducing cognitive states through actions, can improve students’ 

understanding of the mathematical ideas. Findings from other studies have provided evidence that
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suggest gestures influence one’s geometric reasoning. In one study, making specified body shapes

led to improved understanding of angular measure for elementary grade students (Smith, King, & 

Hoyte, 2014). In a two-week classroom intervention, high school students engaged in body 

movements showed greater learning gains than those engaged in mathematically comparable non-

body-based activities in tests of understanding similarity (Smith, 2018). In an intervention 

involving a movement based video game, mathematically relevant actions fostered greater 

geometric reasoning for high school students than matched, but mathematically irrelevant actions,

but only for those students who were already predisposed to producing the gestures (Walkington, 

Nathan, & Wang, 2020). The current study further contributes to this emerging body of work by 

showing that spontaneously produced gestures are implicated as well.

Second, it is valuable to attend to students’ body movements such as their gestures when 

students engage in proof production because these movements contribute to a richer assessment of

student thinking than is provided by speech alone. This is especially true of students’ use of 

dynamic gestures, which indicate ways students employ transformational proof schemes as they 

reason about the generalizability of mathematical conjectures. Gestures appear to carry important 

information about how students think and what they know, above and beyond what students say. 

One compelling finding in this regard is how young children’s gestures can signal their “leading 

edge” of cognitive development. Those children whose gestures and speech were discordant while

addressing the cognitive disequilibrium of a Piagetian water conservation task were found to be 

more receptive to training in the conservation concept (Church & Golden-Meadow, 1986). Others

(e.g., Pier et al., 2019) have shown statistically that gestures make unique contributions to models 

of mathematical performance. In this current study we also observed ways that gestures 

independently contributed to the models of geometry performance, even when controlling for 
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expertise, spatial reasoning, and speech content. This suggests that neglecting gestures when 

assessing student performance may under-predict students’ conceptual understanding. An 

implication from this is that attending to information conveyed through learners’ gestures offers 

important information to educators for making valid formative assessments. Introducing this idea,

and the perceptual training that may need to support this, could provide a rich new channel in 

which teachers can assess student understanding and provide adaptive instruction.
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Tables

Table 1

Descriptive statistics for experts and non-experts
Expert Non-experts 

Male
(n =31)

Female
(n=15)

Total
(n=46)

Male
(n=6)

Female
(n=38)

Total
(n=44)

Average Age (SD) 22.1(3.21) 21.6 (2.14) 21.9 (2.90) 20.3(0.76) 20.68 (2.37) 20.6 (2.22)
% native English speakers 48.4% 60.0% 52.2% 100% 97.4% 97.7%
% Ethnicity- White 45.2% 40.00% 43.48% 83.33% 89.47% 88.64%
% Ethnicity- Asian 45.2% 53.33% 47.83% 0.00% 7.89% 6.82%
% Ethnicity- Other 9.6% 6.67% 8.70% 16.67% 2.63% 5.13%
Average geometry test score (SD) 0.94 (0.08) 0.89 (0.08) 0.92 (0.08) 0.82 (0.09) 0.79 (0.08) 0.79 (0.08)
Average spatial score (SD) 0.82 (0.16) 0.76 (0.22) 0.80 (0.19) 0.53 (0.20) 0.46 (0.22) 0.47 (0.22)
Average verbal fluency score (SD) 18.1 (5.35) 21.5(13.05) 19.2 (8.76) 16.2 (4.73) 18.0 (5.65) 17.8 (5.56)
Likelihood of correct proof 41.13% 36.67% 39.67% 4.17% 11.18% 10.23%
Likelihood of correct insight 85.48% 81.67% 84.24% 25.00% 49.34% 46.02%
Likelihood of correct intuition 79.03% 83.33% 80.43% 54.17% 61.18% 60.23%
Likelihood of representational gesture (per trial) 79.03% 90.00% 82.61% 37.50% 68.42% 64.20%
Likelihood of nondynamic gesture (per trial) 32.26% 40.00% 34.78% 29.17% 45.39% 43.18%
Likelihood of dynamic gesture (per trial) 46.77% 50.00% 47.83% 8.33% 23.03% 21.02%

Note. SD = standard deviation. 
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Table 2
 
Truth value, insights and proof for each of the four mathematical conjectures.

Conjecture Label Conjecture Text Truth Insight Proof

ParallelogramArea The area of a 
parallelogram is 
the same as the 
area of a rectangle 
with the same 
length and height

True (1) States a 
parallelogram is a 
rectangle tilted 
over or pushed 
over.
(2) States area of a
parallelogram and 
a rectangle have 
the same formula.

(1) Shows cutting off a 
triangle from the 
parallelogram, or rearranging 
the area makes them 
congruent.
(2) State all rectangles are 
parallelograms and therefore 
the formula for area is the 
same.

MidsegmentTriangle The segment that 
joins the 
midpoints of two 
sides of any 
triangle is parallel 
to the third side

True (1) True because 
the two triangles 
are similar
(2) True because it
is scaled

(1) Shows base sliding up and
says Similar Triangles or 
scaled so angles are the same
(2) Explicitly says SAS and 
that corresponding angles are 
congruent

AAA Given that you 
know the measure 
of all three angles 
of a triangle, there 
is only one unique
triangle that can 
be formed with 
these three angle 
measurements

False States similar 
triangles or 
infinite/many 
triangles
 

(1) Gives specific 
counterexample
(2) Visually shows scaling or 
discusses scaling and similar 
triangles

Circumscribed A circle can 
be circumscribed   
about any triangle

True (1) Any three 
points on a plane 
make a triangle.
(2) The 
circumcircle 
always passes 
through all three 
vertices of a 
triangle

(1) Demonstrate with vertices 
as points along the 
circumcircle.
(2) Show with the 
perpendicular bisectors of 
each side of the triangle.
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Table 3

Inter-rater Reliability for Participant Transcript Coding
Code Cohen’s kappa Shaffer’s rho

Omnibus 0.911 0.01

Comprehension 1.000 0.00

Correct 1.000 0.00

Intuition 1.000 0.00

Insight 1.000 0.00

Proof Process 0.778 0.04

Dynamic Gesture 0.958 0.00

Non-Dynamic Gesture 0.948 0.01

Note. Shaffer’s rho calculated with a kappa threshold of 0.65. 
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Table 4

Correlations for Key Factors
Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1. Expert
2. Ethnicity .480
3. Age .240 .369
4. Sex .544 .244 .155
5. Native English Speaker .520 .792 .357 .335
6. Spatial Score .641 .422 .149 .434 .479
7. Verbal Score .096 .177 .018 .081 .154 -.021
8. Geometry Knowledge .634 .131 .119 .474 .167 .550 .179
9. Representational Gesture .209 .077 .019 .025 .134 .203 .004 .112
10. Dynamic Gesture .281 .040 .042 .102 .121 .300 .060 .256 .437
11. Non-Dynamic Gesture .086 .032 -.024 .122 .003 -.109 -.055 -.149 .478 -.582
12. Comparative Connectives .040 -.012 .002 -.035 .032 .053 .111 .051 .023 .133 -.112
13. Situation Model- Cohesion .241 .143 .102 .104 -.213 .211 .093 .234 .167 .064 .098 .012
14. Verbs .063 -.042 .113 .076 -.035 .095 .012 .054 .204 .079 .114 -.117 -.103
15. 1st Person Pronouns -.104 .078 .049 -.108 .023 -.067 .034 -.129 -.067 -.073 .024 .018 -.098 .256
16 2nd Person Pronouns .244 -.054 .078 .156 .011 .189 -.010 .254 .172 .278 -.117 .067 -.012 .015 -.222
17. Intuition .222 .183 .121 .081 .141 .150 -.058 .156 .235 .164 .053 -.101 .132 .067 -.111 .092
18. Insight .402 .204 .078 .178 .237 .315 .003 .240 .269 .271 -.021 .022 .216 .024 -.173 .174 .622
19. Proof .339 .126 .042 .190 .201 .352 .002 .274 .348 .623 -.294 .081 .215 .076 -.175 .253 .348 .422

Note. Bolded correlations are significant at p < .010 (2-tailed). 
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Table 5

Results of the Logistic Regression Predicting Intuition
Variable β SE OR p-value

Model 0: Null Model
Random Component- Participant ID variance
Random Component- Conjecture variance

0.33 0.58 .042 ***
0.00 0.00 .054

(Intercept) 0.94 0.14 2.56 .000 ***
Model Deviance (df) 434.2 (357)
Model 1: Main Effects

Random Component- Participant ID variance 0.00 0.05 .051 **
Random Component- Conjecture variance 0.00 0.00 .055
(Intercept) 0.12 0.62 1.12 .850
Expert a 1.12 0.37 3.05 .003 **
Verbal -0.02 0.02 0.98 .120
Spatial 0.01 0.06 1.01 .847
Ethnicity1 (White) b 0.78 0.47 2.17 .100
Ethnicity2 (Asian) b 1.01 0.54 2.76 .049 *
Sexc -0.27 0.32 0.76 .396

Model Deviance (df) 409.6 (351)
Model 2: Main Effects with Gesture

Random Component- Participant ID variance 0.00 0.00 .051
Random Component- Conjecture variance 0.00 0.00 .055
(Intercept) -0.31 0.64 0.73 .626
Expert a 0.82 0.38 2.28 .030 *
Verbal -0.02 0.02 0.98 .204
Spatial -0.03 0.06 0.97 .679
Ethnicity1 (White) b 0.68 0.49 1.97 .164
Ethnicity2 (Asian) b 1.12 0.55 3.05 .042 *
Sexc -0.03 0.33 0.97 .926
Dynamic Gestures d 0.27 0.32 1.31 .385
Non-Dynamic Gestures e 0.83 0.30 2.30 .004 **

Model Deviance (df) 397.2 (349)
Note. SE = standard error. OR = odds ratio. The raw regression coefficients (β ¿ can be transformed into 
odds ratios by exponentiating the coefficient. 
a Non-expert participant is the reference group.
b “Other” ethnicity is the reference group.
c Female is the reference group.
d No Dynamic Gesture is the reference group.
e No Non-Dynamic Gesture is the reference group.
*p < .05, **p < .01, ***p < .001. 
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Table 6

Results of the Logistic Regression Predicting Insight

Variable β SE OR p-value

Model 0: Null Model
Random Component- Participant ID variance 1.83 1.35 .037 ***

Random Component- Conjecture variance 0.11 0.33 .042 ***

(Intercept) 0.89 0.26 2.44 .001 ***

Model Deviance (df) 435.9 (357)

Model 1: Main Effects
Random Component- Participant ID variance 0.53 0.73 .033 ***
Random Component- Conjecture variance 0.11 0.33 .045 ***
(Intercept) -0.94 0.83 0.39 .258
Expert a 2.21 0.49 9.15 .000 ***
Verbal -0.03 0.02 0.97 .170
Spatial 0.10 0.08 1.10 .199
Ethnicity1 (White) b 0.96 0.66 2.61 .146
Ethnicity2 (Asian) b 0.71 0.72 2.04 .318
Sexc -0.46 0.41 0.63 .265

Model Deviance (df) 388.8 (351)
Model 2: Main Effects with Gesture

Random Component- Participant ID variance 0.44 0.67 .039 ***
Random Component- Conjecture variance 0.11 0.33 .044 ***
(Intercept) -1.37 0.84 0.25 .104
Expert a 1.87 0.49 6.47 .000 ***
Verbal -0.02 0.02 0.98 .248
Spatial 0.04 0.08 1.05 .530
Ethnicity1 (White) b 0.82 0.66 2.27 .211
Ethnicity2 (Asian) b 0.82 0.71 2.26 .251
Sexc -0.16 0.41 0.85 .696
Dynamic Gestures d 0.63 0.36 1.87 .083
Non-Dynamic Gestures e 0.79 0.34 2.21 .019 *

Model Deviance (df) 375.0 (349)
Model 3: Main Effects with Gesture and Speech

Random Component- Participant ID variance 0.48 0.69 .041 ***
Random Component- Conjecture variance 0.05 0.23 .038 ***
(Intercept) -1.11 0.86 0.33 .196
Expert a 1.74 0.50 5.69 .001 ***
Verbal -0.03 0.02 0.97 .205
Spatial 0.04 0.08 1.04 .615
Ethnicity1 (White) b 0.82 0.68 2.26 .231
Ethnicity2 (Asian) b 0.85 0.75 2.34 .256
Sexc -0.15 0.42 0.86 .726
Dynamic Gestures d 0.75 0.37 2.11 .042 *
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Non-Dynamic Gestures e 0.67 0.36 1.96 .059
Situation Model- Cohesion 0.41 0.20 1.50 .040 *
Verbs -0.11 0.15 0.90 .482
1st Person Pronouns -0.26 0.15 0.77 .075

Model Deviance (df) 364.0 (346)
Note. SE = standard error. OR = odds ratio. The raw regression coefficients (β ¿ can betransformed into
odds ratios by exponentiating the coefficient.
a Non-expert participant is the reference group.
b “Other” ethnicity is the reference group.
c Female is the reference group.
d No Dynamic Gesture is the reference group.
e No Non-Dynamic Gesture is the reference group.
*p < .05, **p < .01, ***p < .001. 
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Table 7

Results of the Logistic Regression Predicting Transformational Proof

Variable          β        SE   OR p-value

Model 1: Main Effects
.000  ***(Intercept) -3.43 0.77 0.03

Expert a 1.28 0.41 3.60 .001 ***
Verbal -0.02 0.02 0.98 .321

Spatial 0.28 0.08 1.32 .000 ***

Ethnicity1 (White) b 0.25 0.55 1.28 .643

Ethnicity2 (Asian) b -0.33 0.58 0.72 .569
Sexc -0.21 0.32 0.81 .497

Model Deviance (df)                                     431.8 (353)
Model 2: Main Effects with Gesture

(Intercept) -6.74 1.70 0.00 .000 ***
Expert a 0.47 0.52 1.60 .372
Verbal 0.01 0.02 1.01 .813
Spatial 0.16 0.10 1.17 .112
Ethnicity1 (White) b -0.12 0.73 0.89 .866
Ethnicity2 (Asian) b 0.18 0.77 1.20 .819
Sexc 0.41 0.41 1.51 .317

Dynamic Gestures d 2.56 0.36 12.94 .000 ***

Non-Dynamic Gestures e 2.92 1.41 18.54 .162

Model Deviance (df)                                     415.9 (351)

Model 3: Main Effects with Gesture and Speech
(Intercept) -6.57 1.68 .001 .000 ***
Expert a 0.22 0.54 1.24 .691
Verbal 0.01 0.02 1.01 .819
Spatial 0.15 0.10 1.16 .142
Ethnicity1 (White) b 0.03 0.74 1.03 .964
Ethnicity2 (Asian) b 0.40 0.79 1.49 .613
Sexc 0.25 0.43 1.28 .555

Dynamic Gestures d 5.35 1.36 210.61 .000 ***

Non-Dynamic Gestures e 2.51 1.37 12.30 .012

Situation Model- Cohesion 0.43 0.17 1.54 .007 **

Verbs 0.34 0.20 1.40 .089

1st Person Pronouns -0.67 0.23 0.51 .002 **
Model Deviance (df)                                     384.0 (348)
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Note. SE = standard error. OR = odds ratio. The raw regression coefficients (β ¿ can betransformed
into odds ratios by exponentiating the coefficient.
a Non-expert participant is the reference group.
b “Other” ethnicity is the reference group.
c Female is the reference group.
d No Dynamic Gesture is the reference group.
e No Non-Dynamic Gesture is the reference group.
*p < .05, **p < .01, ***p < .001.
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Table 8

Results of the Logistic Regression Predicting Non-Dynamic Gesture

Variable β SE OR p-value

Random Component- Participant ID variance 0.84 0.92 .023  *

Random Component- Conjecture variance 0.01 0.03 .048  *

(Intercept) 0.59 0.06 1.81 .000

Expert a 0.18 0.06 1.20 .004 **
Spatial 0.02 0.01 1.02 .077  
Sex b -0.21 0.05 0.81 .000 ***
Comparative Connectives 0.01 0.02 1.01 .702
Verbs 0.09 0.02 1.10 .000 ***
2nd Person Pronouns 0.05 0.02 1.05 .035  *
1st Person Pronouns -0.04 0.02 0.96 .123

Model Deviance (df) 354.4(350)
Note. SE = standard error. OR = odds ratio. The raw regression coefficients (β ¿ can be 
transformed into odds ratios by exponentiating the coefficient.
a Non-expert participant is the reference group.
b Female is the reference group.
*p < .05, **p < .01, ***p < .001. 



55
EMBODIED GEOMETRIC REASONING

Table 9

Results of the Logistic Regression Predicting Dynamic Gesture

Variable β SE OR p-value

Random Component- Participant ID variance 1.03 1.02 .048 *
Random Component- Conjecture variance 0.45 0.67 .026 *
(Intercept) 0.08 0.06 1.09 .188
Expert a 0.14 0.07 1.15 .031 *
Spatial 0.04 0.01 1.04 .002 **
Sex b -0.10 0.06 0.91 .086
Comparative Connectives 0.05 0.02 1.05 .031 *
Verbs 0.03 0.02 1.03 .182
2nd Person Pronouns 0.09 0.02 1.10 .000 ***
1st Person Pronouns -0.01 0.02 0.98 .554

Model Deviance (df) 380.1(350)
Note. SE = standard error. OR = odds ratio. The raw regression coefficients (β ¿ can be 
transformed into odds ratios by exponentiating the coefficient.
a Non-expert participant is the reference group.
b Female is the reference group.
*p < .05, **p < .01, ***p < .001.
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Figures

/

Figure 1. Participants reasoning about the midsegment conjecture, The segment that joins the 
midpoints of two sides of any triangle is parallel to the third side. 
(a) Left panel shows how a dynamic depictive gesture enacts generalizable relationships of a 
mathematical object (triangle). The participant continually adjusts the angle of one side (right 
arm) as it meets a second side (left hand) as she realizes in mid-sentence that her initial evaluation
that the conjecture was false was inaccurate, and that, in fact, the midsegment will always remain 
parallel to the third side (here, the base). (b) Right panel shows a non-dynamic gesture makes a 
static property joining two sides of the imagined triangle meeting at a vertex with no further 
changes to the shape. 
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Figure 2. Logic model. Spatio-temporal processes (top pathway) combine with language 
processes (bottom pathway) to generate a proof with intuition, which is hypothesized to be 
mediated by simulated action, as exhibited by the speaker’s dynamic gestures and 
transformational speech. Moderators (not shown) include math expertise, prior content 
knowledge, spatial skills, verbal skills.
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Figure 3. Coding system flow chart.


